Syväoppimisen laskennallinen vaativuus

Syväoppiminen on maailmanlaajuisesti käytössä oleva teknologia, jota hyödynnetään yhä etenevässä määrin eri aloilla. Tässä kandidaatintutkielmassa selvitetään mikä on syväoppimisen laskennallinen vaativuus. Tutkielmassa avataan syväoppimisen käsitteistöä sekä laskennallisen vaativuuden teoriaa. Syvä...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Kurikka, Samuli
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Kandityö
Kieli:fin
Julkaistu: 2022
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/81498
_version_ 1828193202430017536
author Kurikka, Samuli
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kurikka, Samuli Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kurikka, Samuli Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kurikka, Samuli
datasource_str_mv jyx
description Syväoppiminen on maailmanlaajuisesti käytössä oleva teknologia, jota hyödynnetään yhä etenevässä määrin eri aloilla. Tässä kandidaatintutkielmassa selvitetään mikä on syväoppimisen laskennallinen vaativuus. Tutkielmassa avataan syväoppimisen käsitteistöä sekä laskennallisen vaativuuden teoriaa. Syväoppiminen on koneoppimisen alalaji, jossa jäljitellään ihmisaivojen neuronien toimintaperiaatteita. Tutkielma antaa pohjaa neuroverk- kojen optimoinnin tutkimuksiin. Lähdekirjallisuus on kerätty pääosin tuoreista alan kunnioitetuista julkaisuista ja tutkielma on toteutettu kirjallisuuskatsauksena. Tutkielmassa on esitetty yksi mahdollinen esitys konvoluutionaalisen neuroverkon laskennalliselle vaativuudelle. Muisti- sekä aikavaativuus konvoluutionaaliselle neuroverkolle on esitetty käyttäen "iso O-notaatiota". Aikavaativuudelle löydettiin yksi notaatio, mutta muistivaativuus on kahdelle eri kerrokselle eli konvoluutio- sekä lajittelukerrokselle. Deep learning is a technology which is increasingly being used in different sectors worldwide. In this bachelor’s thesis the subject is to find out what the computational complexity for deep learning is. The thesis discusses the concepts of deep learning and so- me theory of computational complexity. Deep learning is a subset of machine learning that exploits the operating principles of neurons in the human brain. This thesis provides a basis for research into the optimization of neural networks. The references for this thesis has been collected mainly form recent reputable publications of the field and the thesis has been conducted as a literature review. The thesis presents one possible representation of the computational complexity of a convolutional neural network (CNN). The time and space complexity for a CNN is represented using "Big O notation". Complexities for CNN were presented using multiple notations. Time complexity was presented using only one notation, but space complexity has two diffrent notations, one for convolutional layer and the other for fully connected layer.
first_indexed 2022-06-06T20:00:40Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Rossi, Tuomo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kurikka, Samuli", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-06-06T09:49:50Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-06-06T09:49:50Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81498", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Syv\u00e4oppiminen on maailmanlaajuisesti k\u00e4yt\u00f6ss\u00e4 oleva teknologia, jota hy\u00f6dynnet\u00e4\u00e4n yh\u00e4 etenev\u00e4ss\u00e4 m\u00e4\u00e4rin eri aloilla. T\u00e4ss\u00e4 kandidaatintutkielmassa selvitet\u00e4\u00e4n mik\u00e4 on syv\u00e4oppimisen laskennallinen vaativuus. Tutkielmassa avataan syv\u00e4oppimisen k\u00e4sitteist\u00f6\u00e4 sek\u00e4 laskennallisen vaativuuden teoriaa. Syv\u00e4oppiminen on koneoppimisen alalaji, jossa j\u00e4ljitell\u00e4\u00e4n ihmisaivojen neuronien toimintaperiaatteita. Tutkielma antaa pohjaa neuroverk- kojen optimoinnin tutkimuksiin. L\u00e4hdekirjallisuus on ker\u00e4tty p\u00e4\u00e4osin tuoreista alan kunnioitetuista julkaisuista ja tutkielma on toteutettu kirjallisuuskatsauksena. Tutkielmassa on esitetty yksi mahdollinen esitys konvoluutionaalisen neuroverkon laskennalliselle vaativuudelle. Muisti- sek\u00e4 aikavaativuus konvoluutionaaliselle neuroverkolle on esitetty k\u00e4ytt\u00e4en \"iso O-notaatiota\". Aikavaativuudelle l\u00f6ydettiin yksi notaatio, mutta muistivaativuus on kahdelle eri kerrokselle eli konvoluutio- sek\u00e4 lajittelukerrokselle.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Deep learning is a technology which is increasingly being used in different sectors worldwide. In this bachelor\u2019s thesis the subject is to find out what the computational complexity for deep learning is. The thesis discusses the concepts of deep learning and so- me theory of computational complexity. Deep learning is a subset of machine learning that exploits the operating principles of neurons in the human brain. This thesis provides a basis for research into the optimization of neural networks. The references for this thesis has been collected mainly form recent reputable publications of the field and the thesis has been conducted as a literature review. The thesis presents one possible representation of the computational complexity of a convolutional neural network (CNN). The time and space complexity for a CNN is represented using \"Big O notation\". Complexities for CNN were presented using multiple notations. Time complexity was presented using only one notation, but space complexity has two diffrent notations, one for convolutional layer and the other for fully connected layer.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2022-06-06T09:49:50Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-06-06T09:49:50Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "23", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "syvlaskennallinen vaativuus", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "konvoluutionaaliset neuroverkot", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Syv\u00e4oppimisen laskennallinen vaativuus", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202206063115", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "syv\u00e4oppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_81498
language fin
last_indexed 2025-03-31T20:02:17Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/1226050f-6453-4f6b-8323-6cea198b38a9\/download","text":"URN:NBN:fi:jyu-202206063115.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Kurikka, Samuli Syväoppimisen laskennallinen vaativuus syvlaskennallinen vaativuus konvoluutionaaliset neuroverkot Tietotekniikka Mathematical Information Technology 602 neuroverkot syväoppiminen
title Syväoppimisen laskennallinen vaativuus
title_full Syväoppimisen laskennallinen vaativuus
title_fullStr Syväoppimisen laskennallinen vaativuus Syväoppimisen laskennallinen vaativuus
title_full_unstemmed Syväoppimisen laskennallinen vaativuus Syväoppimisen laskennallinen vaativuus
title_short Syväoppimisen laskennallinen vaativuus
title_sort syväoppimisen laskennallinen vaativuus
title_txtP Syväoppimisen laskennallinen vaativuus
topic syvlaskennallinen vaativuus konvoluutionaaliset neuroverkot Tietotekniikka Mathematical Information Technology 602 neuroverkot syväoppiminen
topic_facet 602 Mathematical Information Technology Tietotekniikka konvoluutionaaliset neuroverkot neuroverkot syvlaskennallinen vaativuus syväoppiminen
url https://jyx.jyu.fi/handle/123456789/81498 http://www.urn.fi/URN:NBN:fi:jyu-202206063115
work_keys_str_mv AT kurikkasamuli syväoppimisenlaskennallinenvaativuus