The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images

Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, kun opettamisessa käytetään kohdealuespesifistä dataa. Mallin ennustamaa ka...

Full description

Bibliographic Details
Main Author: Petäinen, Liisa
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/81181
_version_ 1826225733368807424
author Petäinen, Liisa
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Petäinen, Liisa Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Petäinen, Liisa Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Petäinen, Liisa
datasource_str_mv jyx
description Tässä Pro gradu-työssä tutkitaan konvoluutioneuroverkkojen käyttömahdollisuuksia histopatologisista kuvista tehtävässä kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvittää, mikä on siirto-opettamisen vaikutus, kun opettamisessa käytetään kohdealuespesifistä dataa. Mallin ennustamaa kasvain-strooma suhdelukua verrataan patologin visuaalisesti tekemään arvioon. Tutkimuksesta selvisi, että kohdealuespesifisen datan käyttö esiopetuksessa lisää konvoluutioneuroverkkomallin tarkkuutta. Myös korrelaatiota ennustetun ja visuaalisen arvion välillä oli havaittavissa. Tulevaisuudessa olisi hyvä tutkia kasvain-strooma-suhdeluvun yhteyttä muihin kliinispatologisiin tekijöihin ja potilaan elinaikaan. In this Master’s Thesis, the ability of convolutional neural networks in the evaluation of tumor-stroma ratio from histopathological images, is studied. The goal is to find out, whether pre-training with domain-specific data brings more accuracy to the convolutional neural network model. Tumor-stroma ratio is predicted with the trained model and the predicted values are compared with visual tumor-stroma estimations made by pathologist. When domain-specific data was used in the pre-training of the convolutional neural network, a slight improvement in the validation accuracy of the model was observed. Correlation between the predicted and visual values was also found. Further analysis is needed to study what is the connection of these computationally predicted values to other clinicopathological factors and overall survival of the patient.
first_indexed 2022-05-20T20:00:37Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "P\u00f6l\u00f6nen, Ilkka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Ruusuvuori, Pekka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Pet\u00e4inen, Liisa", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-05-20T06:23:46Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-05-20T06:23:46Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81181", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 Pro gradu-ty\u00f6ss\u00e4 tutkitaan konvoluutioneuroverkkojen k\u00e4ytt\u00f6mahdollisuuksia histopatologisista kuvista teht\u00e4v\u00e4ss\u00e4 kasvain-strooma suhdeluvun arvioinnissa. Tarkoituksena on selvitt\u00e4\u00e4, mik\u00e4 on siirto-opettamisen vaikutus, kun opettamisessa k\u00e4ytet\u00e4\u00e4n kohdealuespesifist\u00e4 dataa. Mallin ennustamaa kasvain-strooma suhdelukua verrataan patologin visuaalisesti tekem\u00e4\u00e4n arvioon. Tutkimuksesta selvisi, ett\u00e4 kohdealuespesifisen datan k\u00e4ytt\u00f6 esiopetuksessa lis\u00e4\u00e4 konvoluutioneuroverkkomallin tarkkuutta. My\u00f6s korrelaatiota ennustetun ja visuaalisen arvion v\u00e4lill\u00e4\noli havaittavissa. Tulevaisuudessa olisi hyv\u00e4 tutkia kasvain-strooma-suhdeluvun yhteytt\u00e4 muihin kliinispatologisiin tekij\u00f6ihin ja potilaan elinaikaan.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this Master\u2019s Thesis, the ability of convolutional neural networks in the evaluation of tumor-stroma ratio from histopathological images, is studied. The goal is to find\nout, whether pre-training with domain-specific data brings more accuracy to the convolutional neural network model. Tumor-stroma ratio is predicted with the trained model and the predicted values are compared with visual tumor-stroma estimations made by pathologist. When domain-specific data was used in the pre-training of the convolutional neural network, a slight improvement in the validation accuracy of the model was observed. Correlation between the predicted and visual values was also found. Further analysis is needed to study what is the connection of these computationally predicted values to other clinicopathological factors and overall survival of the patient.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2022-05-20T06:23:46Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-05-20T06:23:46Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "53", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "digital pathology", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "colorectal cancer", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "histopathology", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "medical image analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "tumor-stroma ratio", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202205202813", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "public", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "university", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sy\u00f6p\u00e4taudit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "patologia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "konen\u00e4k\u00f6", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "paksusuolisy\u00f6p\u00e4", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cancerous diseases", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "pathology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "computer vision", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cancer of the large intestine", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_81181
language eng
last_indexed 2025-02-18T10:56:10Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/24517c03-1929-4930-aada-91e4c25caaa7\/download","text":"URN:NBN:fi:jyu-202205202813.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Petäinen, Liisa The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images digital pathology colorectal cancer histopathology medical image analysis tumor-stroma ratio Tietotekniikka Mathematical Information Technology 602 neuroverkot syöpätaudit koneoppiminen patologia konenäkö paksusuolisyöpä neural networks (information technology) cancerous diseases machine learning pathology computer vision cancer of the large intestine
title The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
title_full The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
title_fullStr The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
title_full_unstemmed The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
title_short The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
title_sort potential of convolutional neural network in the evaluation of tumor stroma ratio from colorectal cancer histopathological images
title_txtP The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
topic digital pathology colorectal cancer histopathology medical image analysis tumor-stroma ratio Tietotekniikka Mathematical Information Technology 602 neuroverkot syöpätaudit koneoppiminen patologia konenäkö paksusuolisyöpä neural networks (information technology) cancerous diseases machine learning pathology computer vision cancer of the large intestine
topic_facet 602 Mathematical Information Technology Tietotekniikka cancer of the large intestine cancerous diseases colorectal cancer computer vision digital pathology histopathology konenäkö koneoppiminen machine learning medical image analysis neural networks (information technology) neuroverkot paksusuolisyöpä pathology patologia syöpätaudit tumor-stroma ratio
url https://jyx.jyu.fi/handle/123456789/81181 http://www.urn.fi/URN:NBN:fi:jyu-202205202813
work_keys_str_mv AT petäinenliisa potentialofconvolutionalneuralnetworkintheevaluationoftumorstromaratiofromcolorect AT petäinenliisa thepotentialofconvolutionalneuralnetworkintheevaluationoftumorstromaratiofromcolor