_version_ |
1809900759691558912
|
annif_keywords_txtF_mv |
cancerous diseases
forecasts
neural networks (information technology)
machine learning
cancer of the large intestine
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p678
http://www.yso.fi/onto/yso/p3297
http://www.yso.fi/onto/yso/p7292
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p5937
|
author |
Petäinen, Liisa
|
author2 |
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
Information Technology
Jyväskylän yliopisto
University of Jyväskylä
Tietotekniikka
Mathematical Information Technology
602
|
author_facet |
Petäinen, Liisa
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
Information Technology
Jyväskylän yliopisto
University of Jyväskylä
Tietotekniikka
Mathematical Information Technology
602
Petäinen, Liisa
|
author_sort |
Petäinen, Liisa
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Informaatioteknologia
|
faculty_txtF |
Informaatioteknologian tiedekunta
|
first_indexed |
2022-05-20T20:00:37Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Pro gradu
|
free_online_boolean |
1
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images</title><creator>Petäinen, Liisa</creator><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="laitos" lang="fi">Informaatioteknologia</contributor><contributor type="laitos" lang="en">Information Technology</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="oppiaine" lang="fi">Tietotekniikka</contributor><contributor type="oppiaine" lang="en">Mathematical Information Technology</contributor><contributor type="oppiainekoodi">602</contributor><subject type="other">digital pathology</subject><subject type="other">colorectal cancer</subject><subject type="other">histopathology</subject><subject type="other">medical image analysis</subject><subject type="other">tumor-stroma ratio</subject><subject type="yso">neuroverkot</subject><subject type="yso">syöpätaudit</subject><subject type="yso">koneoppiminen</subject><subject type="yso">patologia</subject><subject type="yso">konenäkö</subject><subject type="yso">paksusuolisyöpä</subject><subject type="yso">neural networks (information technology)</subject><subject type="yso">cancerous diseases</subject><subject type="yso">machine learning</subject><subject type="yso">pathology</subject><subject type="yso">computer vision</subject><subject type="yso">cancer of the large intestine</subject><available>2022-05-20T06:23:46Z</available><issued>2022</issued><type lang="fi">Pro gradu -tutkielma</type><type lang="en">Master’s thesis</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/81181</identifier><identifier type="urn">URN:NBN:fi:jyu-202205202813</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-202205202813</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/81181/1/URN%3aNBN%3afi%3ajyu-202205202813.pdf" name="URN:NBN:fi:jyu-202205202813.pdf" type="application/pdf" length="49523304" sequence="1"/><recordID>123456789_81181</recordID></qualifieddc>
|
id |
jyx.123456789_81181
|
language |
eng
|
last_indexed |
2024-09-03T10:53:16Z
|
main_date |
2022-01-01T00:00:00Z
|
main_date_str |
2022
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/81181\/1\/URN%3aNBN%3afi%3ajyu-202205202813.pdf","text":"URN:NBN:fi:jyu-202205202813.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
602
|
publication_first_indexed |
2022-05-20T20:00:37Z
|
publishDate |
2022
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Petäinen, Liisa
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
digital pathology
colorectal cancer
histopathology
medical image analysis
tumor-stroma ratio
neuroverkot
syöpätaudit
koneoppiminen
patologia
konenäkö
paksusuolisyöpä
neural networks (information technology)
cancerous diseases
machine learning
pathology
computer vision
cancer of the large intestine
|
subject_txtF |
Tietotekniikka
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_81181&index=0&size=large
|
title |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
title_full |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
title_fullStr |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
title_full_unstemmed |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
title_short |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
title_sort |
potential of convolutional neural network in the evaluation of tumor stroma ratio from colorectal cancer histopathological images
|
title_txtP |
The potential of convolutional neural network in the evaluation of tumor-stroma ratio from colorectal cancer histopathological images
|
topic |
digital pathology
colorectal cancer
histopathology
medical image analysis
tumor-stroma ratio
neuroverkot
syöpätaudit
koneoppiminen
patologia
konenäkö
paksusuolisyöpä
neural networks (information technology)
cancerous diseases
machine learning
pathology
computer vision
cancer of the large intestine
|
topic_facet |
cancer of the large intestine
cancerous diseases
colorectal cancer
computer vision
digital pathology
histopathology
konenäkö
koneoppiminen
machine learning
medical image analysis
neural networks (information technology)
neuroverkot
paksusuolisyöpä
pathology
patologia
syöpätaudit
tumor-stroma ratio
|
url |
https://jyx.jyu.fi/handle/123456789/81181
http://www.urn.fi/URN:NBN:fi:jyu-202205202813
|
work_keys_str_mv |
AT petäinenliisa potentialofconvolutionalneuralnetworkintheevaluationoftumorstromaratiofromcolorect
AT petäinenliisa thepotentialofconvolutionalneuralnetworkintheevaluationoftumorstromaratiofromcolor
|