Machine learning in macroeconomic forecasting

Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken käyttäminen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eivät ole osoittautuneet olevan kovin tarkkoja makrotalouden ennustamisessa. Modernit koneoppimisen menetelmät ovat osoittautuneet h...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Nyholm, Sebastian
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Kandityö
Kieli:eng
Julkaistu: 2022
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/81053
_version_ 1828193201526145024
author Nyholm, Sebastian
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Nyholm, Sebastian Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Nyholm, Sebastian Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Nyholm, Sebastian
datasource_str_mv jyx
description Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken käyttäminen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eivät ole osoittautuneet olevan kovin tarkkoja makrotalouden ennustamisessa. Modernit koneoppimisen menetelmät ovat osoittautuneet hyviksi monessa eri tilanteessa ja monella eri alalla. Koneoppiminen on vahvimmillaan juuri ennusteiden tekemisessä. Taloutta on aina pyritty ennustamaan ekonometrisillä malleilla, mutta koneoppimisen on huomattu monessa paikassa olevan tarkempi ennusteissaan kuin perinteisemmät mallit. Koneoppimista voidaan käyttää työkaluna ennustamisessa monien eri metodien ja algoritmien kautta, joilla kaikilla on omat vahvuutensa sekä heikkoutensa. Jokaista näistä voidaan käyttää erilaisten ennusteiden tekemisessä juuri niiden vahvuuksien ja heikkouksien perusteella. Ennustaa voi esimerkiksi bruttokansantuotteen kasvua ja pienenemistä, inflaatiota tai velkakirjojen korkoja. Koneoppimisen menetelmien on huomattu olevan tehokkaampia kuin perinteisten aikasarja-analyysien, ja vain tulevaisuus näyttää kuinka tarkasti koneoppimista opitaan hyödyntämään makrotalouden ennustamisessa. Tämä kirjallisuuskatsaus avaa koneoppimista, sekä perehtyy tarkemmin sen eri metodeihin ja kertoo miten koneoppimista ja näitä eri metodeja voidaan käyttää talouden ennustamisessa. There has always been large amounts of data available of the economy but using all of this to make predictions about the economy has been difficult. Traditional models used in forecasting and in estimates have not proven to be that accurate. The modern methods that machine learning provides have proven to perform well in many different situations and in many different disciplines. Machine learning is at its strongest in making predictions. Econometric models have always tried to forecast the economy, but it has been noted that machine learning is more accurate in its predictions than the more traditional models. Machine learning can be used as a tool in forecasting through many different methods and algorithms which all have their individual strengths and weaknesses. Each of these can be used in making different kinds of predictions based on their strengths and weaknesses. Some good indicators to forecast would be for example the falls and rises of GDP, inflation, or bonds’ interest rates. Machine learning has already been proven to be more efficient than time-series analysis and only the future will tell how well the macroeconomy will be forecasted with machine learning. This literature review explains what machine learning is, familiarizes the reader with different machine learning methods, and explains how machine learning and its methods can be used in economic forecasting.
first_indexed 2022-05-13T20:00:33Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Kuusio, Ari", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Nyholm, Sebastian", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-05-13T09:23:02Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-05-13T09:23:02Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/81053", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Dataa on aina ollut saatavilla paljon taloudesta, mutta sen kaiken k\u00e4ytt\u00e4minen talouden ennustamisessa on ollut hankalaa. Perinteiset ennustamisen ja arvioinnin mallit eiv\u00e4t ole osoittautuneet olevan kovin tarkkoja makrotalouden ennustamisessa. Modernit koneoppimisen menetelm\u00e4t ovat osoittautuneet hyviksi monessa eri tilanteessa ja monella eri alalla. Koneoppiminen on vahvimmillaan juuri ennusteiden tekemisess\u00e4. Taloutta on aina pyritty ennustamaan ekonometrisill\u00e4 malleilla, mutta koneoppimisen on huomattu monessa paikassa olevan tarkempi ennusteissaan kuin perinteisemm\u00e4t mallit. Koneoppimista voidaan k\u00e4ytt\u00e4\u00e4 ty\u00f6kaluna ennustamisessa monien eri metodien ja algoritmien kautta, joilla kaikilla on omat vahvuutensa sek\u00e4 heikkoutensa. Jokaista n\u00e4ist\u00e4 voidaan k\u00e4ytt\u00e4\u00e4 erilaisten ennusteiden tekemisess\u00e4 juuri niiden vahvuuksien ja heikkouksien perusteella. Ennustaa voi esimerkiksi bruttokansantuotteen kasvua ja pienenemist\u00e4, inflaatiota tai velkakirjojen korkoja. Koneoppimisen menetelmien on huomattu olevan tehokkaampia kuin perinteisten aikasarja-analyysien, ja vain tulevaisuus n\u00e4ytt\u00e4\u00e4 kuinka tarkasti koneoppimista opitaan hy\u00f6dynt\u00e4m\u00e4\u00e4n makrotalouden ennustamisessa. T\u00e4m\u00e4 kirjallisuuskatsaus avaa koneoppimista, sek\u00e4 perehtyy tarkemmin sen eri metodeihin ja kertoo miten koneoppimista ja n\u00e4it\u00e4 eri metodeja voidaan k\u00e4ytt\u00e4\u00e4 talouden ennustamisessa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "There has always been large amounts of data available of the economy but using all of this to make predictions about the economy has been difficult. Traditional models used in forecasting and in estimates have not proven to be that accurate. The modern methods that machine learning provides have proven to perform well in many different situations and in many different disciplines. Machine learning is at its strongest in making predictions. Econometric models have always tried to forecast the economy, but it has been noted that machine learning is more accurate in its predictions than the more traditional models. Machine learning can be used as a tool in forecasting through many different methods and algorithms which all have their individual strengths and weaknesses. Each of these can be used in making different kinds of predictions based on their strengths and weaknesses. Some good indicators to forecast would be for example the falls and rises of GDP, inflation, or bonds\u2019 interest rates. Machine learning has already been proven to be more efficient than time-series analysis and only the future will tell how well the macroeconomy will be forecasted with machine learning. This literature review explains what machine learning is, familiarizes the reader with different machine learning methods, and explains how machine learning and its methods can be used in economic forecasting.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2022-05-13T09:23:02Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-05-13T09:23:02Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "32", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "forecasting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "predicting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Machine learning in macroeconomic forecasting", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202205132695", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "taloustieteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "taloudelliset ennusteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "makrotaloustiede", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "economics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "economic forecasts", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "macroeconomics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_81053
language eng
last_indexed 2025-03-31T20:01:59Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/4a30e527-7cfa-4722-b5e4-9145d64a874b\/download","text":"URN:NBN:fi:jyu-202205132695.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Nyholm, Sebastian Machine learning in macroeconomic forecasting forecasting predicting Tietojärjestelmätiede Information Systems Science 601 taloustieteet koneoppiminen taloudelliset ennusteet makrotaloustiede economics machine learning economic forecasts macroeconomics
title Machine learning in macroeconomic forecasting
title_full Machine learning in macroeconomic forecasting
title_fullStr Machine learning in macroeconomic forecasting Machine learning in macroeconomic forecasting
title_full_unstemmed Machine learning in macroeconomic forecasting Machine learning in macroeconomic forecasting
title_short Machine learning in macroeconomic forecasting
title_sort machine learning in macroeconomic forecasting
title_txtP Machine learning in macroeconomic forecasting
topic forecasting predicting Tietojärjestelmätiede Information Systems Science 601 taloustieteet koneoppiminen taloudelliset ennusteet makrotaloustiede economics machine learning economic forecasts macroeconomics
topic_facet 601 Information Systems Science Tietojärjestelmätiede economic forecasts economics forecasting koneoppiminen machine learning macroeconomics makrotaloustiede predicting taloudelliset ennusteet taloustieteet
url https://jyx.jyu.fi/handle/123456789/81053 http://www.urn.fi/URN:NBN:fi:jyu-202205132695
work_keys_str_mv AT nyholmsebastian machinelearninginmacroeconomicforecasting