Dimension of projection Marstrand's theorem

Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna potentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon dimension minimi melkein kaikkiin eri suuntiin. Intuitiivisesti lause kertoo,...

Full description

Bibliographic Details
Main Author: Pesonen, Sofia
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2022
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/79562
_version_ 1828193045996109824
author Pesonen, Sofia
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_facet Pesonen, Sofia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä Pesonen, Sofia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Matematiikan ja tilastotieteen laitos Department of Mathematics and Statistics Jyväskylän yliopisto University of Jyväskylä
author_sort Pesonen, Sofia
datasource_str_mv jyx
description Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna potentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon dimension minimi melkein kaikkiin eri suuntiin. Intuitiivisesti lause kertoo, että joukon varjon dimensio on suurin mahdollinen. Marstrandin projektiolauseen todistamiseksi tutkielmassa rakennetaan teoria alkaen yleisen mittateorian perustuloksista. Mittateorian pohjalta määritellään Hausdorffin mitta, jonka avulla määritellään joukon Hausdorffin dimensio. Intuitiivisesti Hausdorffin dimensio kuvaa joukon geometrista kokoa ja se on yksikäsitteinen jokaiselle joukolle. Hausdorffin dimensio mahdollistaa monimutkaisten joukkojen, kuten fraktaalien, geometrian tutkimisen. Lisäksi esitellään dimensioihin liittyviä merkintöjä ja tapoja arvioida joukon Hausdorffin dimension suuruutta. Tutkielman lopussa esitellään algoritminen menetelmä, jonka avulla voidaan muodostaa esimerkkejä fraktaaleista. Lopuksi sovelletaan Marstrandin projektiolausetta erilaisiin joukkoihin. John Marstrand todisti projektiolauseen vuonna 1954. Robert Kaufman todsti tuloksen käyttäen potentiaaliteoriaa vuonna 1968. Myöhemmin Kenneth Falconer esitteli Kaufmania mukaillen potentiaaliteoriaan perustuvan todistuksen. Tässä tutkielmassa esitellään kyseinen todistus yksityiskohtaisemmin. Marstrandin projektiolause tuli tunnetuksi, kun Mandelbrot popularisoi fraktaalin käsitteen 1970-luvulla. Lause voidaan yleistää korkeampiin dimensioihin ja se on tärkeä työkalu fraktaalien geometrian tarkastelussa. Vaikka lause on tunnettu pitkään, siihen liittyy edelleen avoimia ongelmia. In this thesis we prove Marstrand's projection theorem using potential theoretical methods. Projection theorem claims that the Hausdorff dimension of the orthogonal projection of a Borel set in $\mathbb{R}^2$ is the minimum between 1 and the dimension of the set for almost all angles. Intuitively, the theorem gives that the shadow of the set has the highest possible dimension. This result was first proven by John Marstrand in 1954 and it became well known after Mandelbrot popularized the notion of fractal in the 1970s. Marstrand’s theorem has generalizations to higher dimensions and it is an important tool to look into the geometry of fractals. Although the theorem has been known for long time, there are still open problems related to it.
first_indexed 2022-01-31T21:00:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Nicolussi Golo, Sebastiano", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Pesonen, Sofia", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2022-01-31T06:50:49Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2022-01-31T06:50:49Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2022", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/79562", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa todistetaan Marstrandin projektiolause k\u00e4ytt\u00e4en apuna potentiaaliteoriaa.\nProjektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaaliprojektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon dimension minimi melkein kaikkiin eri suuntiin.\nIntuitiivisesti lause kertoo, ett\u00e4 joukon varjon dimensio on suurin mahdollinen.\n\nMarstrandin projektiolauseen todistamiseksi tutkielmassa rakennetaan teoria alkaen yleisen mittateorian perustuloksista.\nMittateorian pohjalta m\u00e4\u00e4ritell\u00e4\u00e4n Hausdorffin mitta, jonka avulla m\u00e4\u00e4ritell\u00e4\u00e4n joukon Hausdorffin dimensio.\nIntuitiivisesti Hausdorffin dimensio kuvaa joukon geometrista kokoa ja se on yksik\u00e4sitteinen jokaiselle joukolle.\nHausdorffin dimensio mahdollistaa monimutkaisten joukkojen, kuten fraktaalien, geometrian tutkimisen.\nLis\u00e4ksi esitell\u00e4\u00e4n dimensioihin liittyvi\u00e4 merkint\u00f6j\u00e4 ja tapoja arvioida joukon Hausdorffin dimension suuruutta.\nTutkielman lopussa esitell\u00e4\u00e4n algoritminen menetelm\u00e4, jonka avulla voidaan muodostaa esimerkkej\u00e4 fraktaaleista.\nLopuksi sovelletaan Marstrandin projektiolausetta erilaisiin joukkoihin.\n\nJohn Marstrand todisti projektiolauseen vuonna 1954.\nRobert Kaufman todsti tuloksen k\u00e4ytt\u00e4en potentiaaliteoriaa vuonna 1968.\nMy\u00f6hemmin Kenneth Falconer esitteli Kaufmania mukaillen potentiaaliteoriaan perustuvan todistuksen.\nT\u00e4ss\u00e4 tutkielmassa esitell\u00e4\u00e4n kyseinen todistus yksityiskohtaisemmin.\nMarstrandin projektiolause tuli tunnetuksi, kun Mandelbrot popularisoi fraktaalin k\u00e4sitteen 1970-luvulla.\nLause voidaan yleist\u00e4\u00e4 korkeampiin dimensioihin ja se on t\u00e4rke\u00e4 ty\u00f6kalu fraktaalien geometrian tarkastelussa.\nVaikka lause on tunnettu pitk\u00e4\u00e4n, siihen liittyy edelleen avoimia ongelmia.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this thesis we prove Marstrand's projection theorem using potential theoretical methods.\nProjection theorem claims that the Hausdorff dimension of the orthogonal projection of a Borel set in $\\mathbb{R}^2$ is the minimum between 1 and the dimension of the set for almost all angles.\nIntuitively, the theorem gives that the shadow of the set has the highest possible dimension.\nThis result was first proven by John Marstrand in 1954 and it became well known after Mandelbrot popularized the notion of fractal in the 1970s.\nMarstrand\u2019s theorem has generalizations to higher dimensions and it is an important tool to look into the geometry of fractals.\nAlthough the theorem has been known for long time, there are still open problems related to it.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2022-01-31T06:50:49Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2022-01-31T06:50:49Z (GMT). No. of bitstreams: 0\n Previous issue date: 2022", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "41", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Dimension of projection : Marstrand's theorem", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202201311329", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Matematiikan opettajankoulutus", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Teacher education programme in Mathematics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4041", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matematiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mittateoria", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fraktaalit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ulottuvuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mathematics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "measure theory", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fractals", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dimension", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "", "language": null, "element": "rights", "qualifier": "accessrights", "schema": "dc"}]
id jyx.123456789_79562
language eng
last_indexed 2025-03-31T20:01:26Z
main_date 2022-01-01T00:00:00Z
main_date_str 2022
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/bccabe32-bba2-40e7-85aa-a3cfa39b4ef5\/download","text":"URN:NBN:fi:jyu-202201311329.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2022
record_format qdc
source_str_mv jyx
spellingShingle Pesonen, Sofia Dimension of projection : Marstrand's theorem Matematiikan opettajankoulutus Teacher education programme in Mathematics 4041 matematiikka mittateoria fraktaalit ulottuvuus mathematics measure theory fractals dimension
title Dimension of projection : Marstrand's theorem
title_full Dimension of projection : Marstrand's theorem
title_fullStr Dimension of projection : Marstrand's theorem Dimension of projection : Marstrand's theorem
title_full_unstemmed Dimension of projection : Marstrand's theorem Dimension of projection : Marstrand's theorem
title_short Dimension of projection
title_sort dimension of projection marstrand s theorem
title_sub Marstrand's theorem
title_txtP Dimension of projection : Marstrand's theorem
topic Matematiikan opettajankoulutus Teacher education programme in Mathematics 4041 matematiikka mittateoria fraktaalit ulottuvuus mathematics measure theory fractals dimension
topic_facet 4041 Matematiikan opettajankoulutus Teacher education programme in Mathematics dimension fractals fraktaalit matematiikka mathematics measure theory mittateoria ulottuvuus
url https://jyx.jyu.fi/handle/123456789/79562 http://www.urn.fi/URN:NBN:fi:jyu-202201311329
work_keys_str_mv AT pesonensofia dimensionofprojectionmarstrandstheorem