Emulsioräjähdysaineen panostusprosessin tiedonlouhinta

Tämän tutkielman tavoitteena oli löytää uutta ja hyödyllistä tietoa emulsioräjähdysaineen panostusprosessista hyödyntäen tiedonlouhinnan menetelmiä. Aineistona oli panostusyksiköistä kerätty moniulotteinen aikasarjadata. Tutkielmassa käytiin läpi kohdealueeseen ja aikasarjojen erityispirteisiin sopi...

Full description

Bibliographic Details
Main Author: Kaasalainen, Suvi
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/79145
_version_ 1826225699197812736
author Kaasalainen, Suvi
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kaasalainen, Suvi Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kaasalainen, Suvi Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kaasalainen, Suvi
datasource_str_mv jyx
description Tämän tutkielman tavoitteena oli löytää uutta ja hyödyllistä tietoa emulsioräjähdysaineen panostusprosessista hyödyntäen tiedonlouhinnan menetelmiä. Aineistona oli panostusyksiköistä kerätty moniulotteinen aikasarjadata. Tutkielmassa käytiin läpi kohdealueeseen ja aikasarjojen erityispirteisiin sopivia ohjaamattoman oppimisen menetelmiä. Tiedonlouhinnan menetelmiksi valittiin kontekstuaalinen matriisiprofiili ja sen soveltaminen klusterointiin ja poikkeavuuksien havaitsemiseen seuraten Knowledge Discovery in Databases (KDD) -prosessia. Menetelmien avulla datasta löydettiin poikkeavuuksia. Tulosten avulla pyritään parantamaan panostusprosessin laatua sekä tarjoamaan tarkempaa tietoa asiakkaille. The aim of this theses was to find novel and useful information from emulsion explosives charging process. Multivariate time series data was collected from charging units. Suitable unsupervised machine learning methods for times series data were discussed. Data mining methods used were contextual matrix profile applied to clustering and anomaly detection following the steps of Knowledge Discovery in Databases (KDD) process. Anomalies and discords were found as a result. Results and information are to be used to improve the quality of the charging process and provide more detailed information to customers.
first_indexed 2021-12-22T21:03:36Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "K\u00e4rkk\u00e4inen, Tommi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "H\u00e4m\u00e4l\u00e4inen, Joonas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kaasalainen, Suvi", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-12-22T11:41:58Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-12-22T11:41:58Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/79145", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n tutkielman tavoitteena oli l\u00f6yt\u00e4\u00e4 uutta ja hy\u00f6dyllist\u00e4 tietoa emulsior\u00e4j\u00e4hdysaineen panostusprosessista hy\u00f6dynt\u00e4en tiedonlouhinnan menetelmi\u00e4. Aineistona oli panostusyksik\u00f6ist\u00e4 ker\u00e4tty moniulotteinen aikasarjadata. Tutkielmassa k\u00e4ytiin l\u00e4pi kohdealueeseen ja aikasarjojen erityispirteisiin sopivia ohjaamattoman oppimisen menetelmi\u00e4. Tiedonlouhinnan menetelmiksi valittiin kontekstuaalinen matriisiprofiili ja sen soveltaminen klusterointiin ja poikkeavuuksien havaitsemiseen seuraten Knowledge Discovery in Databases (KDD) -prosessia. Menetelmien avulla datasta l\u00f6ydettiin poikkeavuuksia. Tulosten avulla pyrit\u00e4\u00e4n parantamaan panostusprosessin laatua sek\u00e4 tarjoamaan tarkempaa tietoa asiakkaille.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The aim of this theses was to find novel and useful information from emulsion explosives charging process. Multivariate time series data was collected from charging units. Suitable unsupervised machine learning methods for times series data were discussed. Data mining methods used were contextual matrix profile applied to clustering and anomaly detection following the steps of Knowledge Discovery in Databases (KDD) process. Anomalies and discords were found as a result. Results and information are to be used to improve the quality of the charging process and provide more detailed information to customers.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2021-12-22T11:41:58Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-12-22T11:41:58Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "83", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Emulsior\u00e4j\u00e4hdysaineen panostusprosessin tiedonlouhinta", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202112226127", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "business", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "r\u00e4j\u00e4hdysaineet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "aikasarjat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonlouhinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_79145
language fin
last_indexed 2025-02-18T10:55:07Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/882268dc-3255-49a1-8c4f-2d8f01a8aad5\/download","text":"URN:NBN:fi:jyu-202112226127.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Kaasalainen, Suvi Emulsioräjähdysaineen panostusprosessin tiedonlouhinta Tietotekniikka Mathematical Information Technology 602 räjähdysaineet aikasarjat koneoppiminen tiedonlouhinta
title Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_full Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_fullStr Emulsioräjähdysaineen panostusprosessin tiedonlouhinta Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_full_unstemmed Emulsioräjähdysaineen panostusprosessin tiedonlouhinta Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_short Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_sort emulsioräjähdysaineen panostusprosessin tiedonlouhinta
title_txtP Emulsioräjähdysaineen panostusprosessin tiedonlouhinta
topic Tietotekniikka Mathematical Information Technology 602 räjähdysaineet aikasarjat koneoppiminen tiedonlouhinta
topic_facet 602 Mathematical Information Technology Tietotekniikka aikasarjat koneoppiminen räjähdysaineet tiedonlouhinta
url https://jyx.jyu.fi/handle/123456789/79145 http://www.urn.fi/URN:NBN:fi:jyu-202112226127
work_keys_str_mv AT kaasalainensuvi emulsioräjähdysaineenpanostusprosessintiedonlouhinta