A software for simulating dispersive properties of multilayered phononic crystal membranes

Tässä tutkielmassa kehitetty uudenlainen Kalvo-ohjelmisto simuloi monikerroksisten sylinterireikähilaisten fononikidekalvojen dispersioita äärelliselementtimenetelmää (FEM) käyttäen. Havainnollistavan systemaattisen fononikidetutkimuksen simulaatioissa käytettiin neljää erilaista laboratoriossa usei...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Lappalainen, Panu
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2021
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/78714
_version_ 1826225768127004672
author Lappalainen, Panu
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Lappalainen, Panu Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Lappalainen, Panu Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Lappalainen, Panu
datasource_str_mv jyx
description Tässä tutkielmassa kehitetty uudenlainen Kalvo-ohjelmisto simuloi monikerroksisten sylinterireikähilaisten fononikidekalvojen dispersioita äärelliselementtimenetelmää (FEM) käyttäen. Havainnollistavan systemaattisen fononikidetutkimuksen simulaatioissa käytettiin neljää erilaista laboratoriossa usein käytettyä materiaalia: piinitridiä (Si3N4), alumiinioksidia (Al2O3), polystyreeniä (PS) ja lyijyä (Pb). Vastaavan laajuista systemaattista tutkimusta ei ole aiemmin kyetty tekemään. Aiemmista simulaatioista tunnetaan, että sylinterireikäisellä Si3N4-fononikiteellä, jonka täyttöaste F = 0.7, hilavakio a = 1000 nm ja kalvonpaksuus hSi3N4 = 400 nm, on spektriaukko, jonka suhteellinen koko w/M ≈ 0.202. Osoittautui, että tätä spektriaukkoa on mahdollista laajentaa lisäämällä kalvoon kerros toista materiaalia. Ohjelmistoa käyttäen löydettiin uusi rakenne, jolla hilan spektriaukon suh- teelliseksi kooksi saatiin simuloitua ≈0.234 (kun F = 0.7) käyttäen Si3N4–Al2O3-kaksikerroskalvoa, jonka hSi3N4 = 340 nm ja hAl2O3 = 130 nm. Tällä materiaalikonfiguraatiolla on spektriaukko vain kun F > 0.58. Tämä spektriaukko laajenee nopeasti täyttöastetta kasvatettaessa, kunnes F > 0.68, minkä jälkeen aukon laajanemistahti hidastuu merkittävästi. Si3N4-kalvon spektriaukkoa ei saatu laajennet- tua polystyreeni- tai lyijykerroksilla. Fononikiteen dispersiorelaatiot muuttuvat, jos toinen kaksikerroskalvon materiaaleista jaetaan kahtia ympäröimään toista materiaalia, eritoten jos jaettava materiaali on jäykempi kahdesta. Esimerkiksi Si3N4–PS- ja PS–Si3N4–PS-kalvoilla on spektriaukko, kun hPS:hSi3N4 = 1:10 ja F = 0.7, mutta vastaavalla Si3N4–PS–Si3N4-kalvolla ei. Ohjelmisto osoittautui hyödylliseksi monikerroksisten fononikiteiden dispersiorelaatioiden systemaattiseen tutkimukseen. This thesis introduces Kalvo, a new type of software developed for simulating the dispersions of multilayered phononic crystal membranes with a cylindrical hole lattice, using the finite element method (FEM). The simulations in a demonstrative systematic study used four different materials commonly used in laboratory: silicon nitride (Si3N4), aluminum oxide (Al2O3), polystyrene (PS) and lead (PS). A systematic study of this scale has not been possible before. It is known from prior simulations that a Si3N4 phononic crystal with cylindrical hole lattice, filling factor F = 0.7, lattice constant a = 1000 nm and Si3N4 membrane thickness hSi3N4 = 400 nm, has a relative band gap w/M ≈ 0.202. Using the software, it was found out that this band gap could be increased to ≈0.234 (for F = 0.7), by using a Si3N4–Al2O3 dual layer membrane with hSi3N4 = 340 nm and hAl2O3 = 130 nm. For this configuration of materials, the band gap exists only when F > 0.58. This band gap widens rapidly as filling factor is increased, until F > 0.68, after which the rate of increasing decreases significantly. The Si3N4 membrane’s band gap could not be widened with layers of polystyrene or lead. The band structure of a phononic crystal is changed if one of the materials in a dual layer membrane is distributed into two layers surrounding the other material, especially if the stiffer of the two materials is distributed. For instance, a band gap exists for a Si3N4–PS and PS–Si3N4–PS membranes with hPS to hSi3N4 ratio of 1:10 and F = 0.7, but not for Si3N4–PS–Si3N4. The software proved to be useful for systematically studying the band structures of multilayered phononic crystals.
first_indexed 2021-11-19T21:00:45Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Puurtinen, Tuomas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Lappalainen, Panu", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-11-19T07:39:46Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-11-19T07:39:46Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/78714", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa kehitetty uudenlainen Kalvo-ohjelmisto simuloi monikerroksisten sylinterireik\u00e4hilaisten fononikidekalvojen dispersioita \u00e4\u00e4relliselementtimenetelm\u00e4\u00e4 (FEM) k\u00e4ytt\u00e4en. Havainnollistavan systemaattisen fononikidetutkimuksen simulaatioissa k\u00e4ytettiin nelj\u00e4\u00e4 erilaista laboratoriossa usein k\u00e4ytetty\u00e4 materiaalia: piinitridi\u00e4 (Si3N4), alumiinioksidia (Al2O3), polystyreeni\u00e4 (PS) ja lyijy\u00e4 (Pb). Vastaavan laajuista systemaattista tutkimusta ei ole aiemmin kyetty tekem\u00e4\u00e4n.\n\nAiemmista simulaatioista tunnetaan, ett\u00e4 sylinterireik\u00e4isell\u00e4 Si3N4-fononikiteell\u00e4, jonka t\u00e4ytt\u00f6aste F = 0.7, hilavakio a = 1000 nm ja kalvonpaksuus hSi3N4 = 400 nm, on spektriaukko, jonka suhteellinen koko w/M \u2248 0.202. Osoittautui, ett\u00e4 t\u00e4t\u00e4 spektriaukkoa on mahdollista laajentaa lis\u00e4\u00e4m\u00e4ll\u00e4 kalvoon kerros toista materiaalia. Ohjelmistoa k\u00e4ytt\u00e4en l\u00f6ydettiin uusi rakenne, jolla hilan spektriaukon suh- teelliseksi kooksi saatiin simuloitua \u22480.234 (kun F = 0.7) k\u00e4ytt\u00e4en Si3N4\u2013Al2O3-kaksikerroskalvoa, jonka hSi3N4 = 340 nm ja hAl2O3 = 130 nm. T\u00e4ll\u00e4 materiaalikonfiguraatiolla on spektriaukko vain kun F > 0.58. T\u00e4m\u00e4 spektriaukko laajenee nopeasti t\u00e4ytt\u00f6astetta kasvatettaessa, kunnes F > 0.68, mink\u00e4 j\u00e4lkeen aukon laajanemistahti hidastuu merkitt\u00e4v\u00e4sti. Si3N4-kalvon spektriaukkoa ei saatu laajennet- tua polystyreeni- tai lyijykerroksilla. Fononikiteen dispersiorelaatiot muuttuvat, jos toinen kaksikerroskalvon materiaaleista jaetaan kahtia ymp\u00e4r\u00f6im\u00e4\u00e4n toista materiaalia, eritoten jos jaettava materiaali on j\u00e4ykempi kahdesta. Esimerkiksi Si3N4\u2013PS- ja PS\u2013Si3N4\u2013PS-kalvoilla on spektriaukko, kun hPS:hSi3N4 = 1:10 ja F = 0.7, mutta vastaavalla Si3N4\u2013PS\u2013Si3N4-kalvolla ei.\n\nOhjelmisto osoittautui hy\u00f6dylliseksi monikerroksisten fononikiteiden dispersiorelaatioiden systemaattiseen tutkimukseen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This thesis introduces Kalvo, a new type of software developed for simulating the dispersions of multilayered phononic crystal membranes with a cylindrical hole lattice, using the finite element method (FEM). The simulations in a demonstrative systematic study used four different materials commonly used in laboratory: silicon nitride (Si3N4), aluminum oxide (Al2O3), polystyrene (PS) and lead (PS). A systematic study of this scale has not been possible before.\n\nIt is known from prior simulations that a Si3N4 phononic crystal with cylindrical hole lattice, filling factor F = 0.7, lattice constant a = 1000 nm and Si3N4 membrane thickness hSi3N4 = 400 nm, has a relative band gap w/M \u2248 0.202. Using the software, it was found out that this band gap could be increased to \u22480.234 (for F = 0.7), by using a Si3N4\u2013Al2O3 dual layer membrane with hSi3N4 = 340 nm and hAl2O3 = 130 nm. For this configuration of materials, the band gap exists only when F > 0.58. This band gap widens rapidly as filling factor is increased, until F > 0.68, after which the rate of increasing decreases significantly. The Si3N4 membrane\u2019s band gap could not be widened with layers of polystyrene or lead. The band structure of a phononic crystal is changed if one of the materials in a dual layer membrane is distributed into two layers surrounding the other material, especially if the stiffer of the two materials is distributed. For instance, a band gap exists for a Si3N4\u2013PS and PS\u2013Si3N4\u2013PS membranes with hPS to hSi3N4 ratio of 1:10 and F = 0.7, but not for Si3N4\u2013PS\u2013Si3N4.\n\nThe software proved to be useful for systematically studying the band structures of multilayered phononic crystals.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-11-19T07:39:46Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-11-19T07:39:46Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "73", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "FEM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "phononic crystal", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "multilayer", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "silicon nitride", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Kalvo", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "A software for simulating dispersive properties of multilayered phononic crystal membranes", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202111195725", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hajonta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fononit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tietokoneohjelmat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kiteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kalvot (biologia)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "rakenne (ominaisuudet)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulaattorit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dispersion (mathematics and statistics)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "phonons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "computer programmes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "crystals", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "membranes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "structure (properties)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "simulators", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_78714
language eng
last_indexed 2025-02-18T10:54:45Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2e85ad34-2635-4e3e-bf26-4071279acad8\/download","text":"URN:NBN:fi:jyu-202111195725.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Lappalainen, Panu A software for simulating dispersive properties of multilayered phononic crystal membranes FEM phononic crystal multilayer silicon nitride Kalvo Fysiikka Physics 4021 hajonta fononit tietokoneohjelmat simulointi kiteet kalvot (biologia) rakenne (ominaisuudet) simulaattorit dispersion (mathematics and statistics) phonons computer programmes simulation crystals membranes structure (properties) simulators
title A software for simulating dispersive properties of multilayered phononic crystal membranes
title_full A software for simulating dispersive properties of multilayered phononic crystal membranes
title_fullStr A software for simulating dispersive properties of multilayered phononic crystal membranes A software for simulating dispersive properties of multilayered phononic crystal membranes
title_full_unstemmed A software for simulating dispersive properties of multilayered phononic crystal membranes A software for simulating dispersive properties of multilayered phononic crystal membranes
title_short A software for simulating dispersive properties of multilayered phononic crystal membranes
title_sort software for simulating dispersive properties of multilayered phononic crystal membranes
title_txtP A software for simulating dispersive properties of multilayered phononic crystal membranes
topic FEM phononic crystal multilayer silicon nitride Kalvo Fysiikka Physics 4021 hajonta fononit tietokoneohjelmat simulointi kiteet kalvot (biologia) rakenne (ominaisuudet) simulaattorit dispersion (mathematics and statistics) phonons computer programmes simulation crystals membranes structure (properties) simulators
topic_facet 4021 FEM Fysiikka Kalvo Physics computer programmes crystals dispersion (mathematics and statistics) fononit hajonta kalvot (biologia) kiteet membranes multilayer phononic crystal phonons rakenne (ominaisuudet) silicon nitride simulaattorit simulation simulators simulointi structure (properties) tietokoneohjelmat
url https://jyx.jyu.fi/handle/123456789/78714 http://www.urn.fi/URN:NBN:fi:jyu-202111195725
work_keys_str_mv AT lappalainenpanu asoftwareforsimulatingdispersivepropertiesofmultilayeredphononiccrystalmembranes AT lappalainenpanu softwareforsimulatingdispersivepropertiesofmultilayeredphononiccrystalmembranes