Tracking a rat in an open field experiment with a deep learning-based model

New artificial neural network methods have changed the way animals are tracked in neuroscience and psychology experiments. The purpose of this thesis is to test the state-of-the-art method of animal tracking DeepLabCut and to develop a usable model for tracking rats in an open field type experiment,...

Full description

Bibliographic Details
Main Author: Kantola, Lauri
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/78556
_version_ 1826225728106004480
author Kantola, Lauri
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kantola, Lauri Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kantola, Lauri Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kantola, Lauri
datasource_str_mv jyx
description New artificial neural network methods have changed the way animals are tracked in neuroscience and psychology experiments. The purpose of this thesis is to test the state-of-the-art method of animal tracking DeepLabCut and to develop a usable model for tracking rats in an open field type experiment, and to use tracking information to extract researchrelated key figures via self-tailored analysis software. The model trained with the DeepLabCut and 825 labeled images was accurate and suitable to be used in a research experiment. With the help of tracked body parts, it was possible to extract meaningful key figures for further analysis in a research experiment. Uudet keinotekoisiin hermoverkkoihin perustuvat menetelmät ovat muuttaneet sitä, miten eläimiä seurataan neurotieteen ja psykologian koeasetelmissa. Tämän tutkimuksen tarkoituksena on ollut testata neuroverkkoihin perustuvaa DeepLabCutmenetelmää rottien seurantaan avoimen kentän testin tyyppisessä koeasetelmassa ja tuottaa seurantadatasta tutkimusten kannalta merkityksellisiä avainlukuja itse kehitetyn analyysiohjelman avulla. DeepLabCutilla ja 825 kuvalla opetettu malli oli tarkka ja soveltuva tutkimuskäyttöön. Seurattujen eläimen kehopisteiden avulla pystyttiin tuottamaan tunnuslukuja tutkimusten analyysejä varten.
first_indexed 2021-11-09T21:01:05Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Nieminen, Paavo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Nokia, Miriam", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kantola, Lauri", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-11-09T11:24:16Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-11-09T11:24:16Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/78556", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "New artificial neural network methods have changed the way animals are tracked in neuroscience and psychology experiments. The purpose of this thesis is to test the state-of-the-art method of animal tracking DeepLabCut and to develop a usable model for tracking rats in an open field type experiment, and to use tracking information to extract researchrelated key figures via self-tailored analysis software. The model trained with the DeepLabCut and 825 labeled images was accurate and suitable to be used in a research experiment. With the help of tracked body parts, it was possible to extract meaningful key figures for further analysis in a research experiment.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Uudet keinotekoisiin hermoverkkoihin perustuvat menetelm\u00e4t ovat muuttaneet sit\u00e4, miten el\u00e4imi\u00e4 seurataan neurotieteen ja psykologian koeasetelmissa. T\u00e4m\u00e4n tutkimuksen tarkoituksena on ollut testata neuroverkkoihin perustuvaa DeepLabCutmenetelm\u00e4\u00e4 rottien seurantaan avoimen kent\u00e4n testin tyyppisess\u00e4 koeasetelmassa ja tuottaa seurantadatasta tutkimusten kannalta merkityksellisi\u00e4 avainlukuja itse kehitetyn analyysiohjelman avulla. DeepLabCutilla ja 825 kuvalla opetettu malli oli tarkka ja soveltuva tutkimusk\u00e4ytt\u00f6\u00f6n. Seurattujen el\u00e4imen kehopisteiden avulla pystyttiin tuottamaan tunnuslukuja tutkimusten analyysej\u00e4 varten.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-11-09T11:24:16Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-11-09T11:24:16Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "51", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "animal tracking", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "artificial neural networks", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "convolutional neural networks", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "DeepLabCut", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "machine vision", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "open field test", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Tracking a rat in an open field experiment with a deep learning-based model", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202111095578", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "jyrsij\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "rotta (laji)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neurotieteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "syv\u00e4oppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ohjelmistokehitys", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bonsai", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "videokamerat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ruhot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "oppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "rodents", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Rattus norvegicus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neurosciences", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "deep learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks (information technology)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "software development", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bonsai", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "video cameras", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "animal bodies", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_78556
language eng
last_indexed 2025-02-18T10:55:34Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/16d0ac51-bbd7-4c8b-982c-399f12005dc3\/download","text":"URN:NBN:fi:jyu-202111095578.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Kantola, Lauri Tracking a rat in an open field experiment with a deep learning-based model animal tracking artificial neural networks convolutional neural networks DeepLabCut machine vision open field test Tietotekniikka Mathematical Information Technology 602 jyrsijät rotta (laji) neurotieteet syväoppiminen koneoppiminen neuroverkot tekoäly ohjelmistokehitys bonsai videokamerat ruhot oppiminen rodents Rattus norvegicus neurosciences deep learning machine learning neural networks (information technology) artificial intelligence software development video cameras animal bodies learning
title Tracking a rat in an open field experiment with a deep learning-based model
title_full Tracking a rat in an open field experiment with a deep learning-based model
title_fullStr Tracking a rat in an open field experiment with a deep learning-based model Tracking a rat in an open field experiment with a deep learning-based model
title_full_unstemmed Tracking a rat in an open field experiment with a deep learning-based model Tracking a rat in an open field experiment with a deep learning-based model
title_short Tracking a rat in an open field experiment with a deep learning-based model
title_sort tracking a rat in an open field experiment with a deep learning based model
title_txtP Tracking a rat in an open field experiment with a deep learning-based model
topic animal tracking artificial neural networks convolutional neural networks DeepLabCut machine vision open field test Tietotekniikka Mathematical Information Technology 602 jyrsijät rotta (laji) neurotieteet syväoppiminen koneoppiminen neuroverkot tekoäly ohjelmistokehitys bonsai videokamerat ruhot oppiminen rodents Rattus norvegicus neurosciences deep learning machine learning neural networks (information technology) artificial intelligence software development video cameras animal bodies learning
topic_facet 602 DeepLabCut Mathematical Information Technology Rattus norvegicus Tietotekniikka animal bodies animal tracking artificial intelligence artificial neural networks bonsai convolutional neural networks deep learning jyrsijät koneoppiminen learning machine learning machine vision neural networks (information technology) neurosciences neurotieteet neuroverkot ohjelmistokehitys open field test oppiminen rodents rotta (laji) ruhot software development syväoppiminen tekoäly video cameras videokamerat
url https://jyx.jyu.fi/handle/123456789/78556 http://www.urn.fi/URN:NBN:fi:jyu-202111095578
work_keys_str_mv AT kantolalauri trackingaratinanopenfieldexperimentwithadeeplearningbasedmodel