_version_ |
1799745099792384000
|
annif_keywords_txtF_mv |
neural networks (information technology)
analysis
machine learning
artificial intelligence
deep learning
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p7292
http://www.yso.fi/onto/yso/p6851
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p2616
http://www.yso.fi/onto/yso/p39324
|
author |
Romppanen, Vesa
|
author2 |
Liikuntatieteellinen tiedekunta
Faculty of Sport and Health Sciences
Liikunta- ja terveystieteet
Sport and Health Sciences
Jyväskylän yliopisto
University of Jyväskylä
Biomekaniikka
Biomechanics
5012
|
author_facet |
Romppanen, Vesa
Liikuntatieteellinen tiedekunta
Faculty of Sport and Health Sciences
Liikunta- ja terveystieteet
Sport and Health Sciences
Jyväskylän yliopisto
University of Jyväskylä
Biomekaniikka
Biomechanics
5012
Romppanen, Vesa
|
author_sort |
Romppanen, Vesa
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Liikunta- ja terveystieteet
|
faculty_txtF |
Liikuntatieteellinen tiedekunta
|
first_indexed |
2021-09-30T20:00:56Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Maisterivaiheen työ
|
free_online_boolean |
1
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks</title><creator>Romppanen, Vesa</creator><contributor type="tiedekunta" lang="fi">Liikuntatieteellinen tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Sport and Health Sciences</contributor><contributor type="laitos" lang="fi">Liikunta- ja terveystieteet</contributor><contributor type="laitos" lang="en">Sport and Health Sciences</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="oppiaine" lang="fi">Biomekaniikka</contributor><contributor type="oppiaine" lang="en">Biomechanics</contributor><contributor type="oppiainekoodi">5012</contributor><subject type="other">markerless</subject><subject type="other">countermovement jump</subject><subject type="other">deeplabcut</subject><subject type="yso">toistettavuus</subject><subject type="yso">syväoppiminen</subject><subject type="yso">koneoppiminen</subject><subject type="yso">biomekaniikka</subject><subject type="yso">nivelet</subject><subject type="yso">liikeanalyysi</subject><subject type="yso">hyppääminen</subject><subject type="yso">liikeoppi</subject><subject type="yso">algoritmit</subject><subject type="yso">repeatability</subject><subject type="yso">deep learning</subject><subject type="yso">machine learning</subject><subject type="yso">biomechanics</subject><subject type="yso">joints (musculoskeletal system)</subject><subject type="yso">motion analysis</subject><subject type="yso">jumping</subject><subject type="yso">kinematics</subject><subject type="yso">algorithms</subject><available>2021-09-30T05:19:32Z</available><issued>2021</issued><type lang="en">Master’s thesis</type><type lang="fi">Pro gradu -tutkielma</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/77969</identifier><identifier type="urn">URN:NBN:fi:jyu-202109305033</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-202109305033</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/77969/1/URN%3aNBN%3afi%3ajyu-202109305033.pdf" name="URN:NBN:fi:jyu-202109305033.pdf" type="application/pdf" length="1339938" sequence="1"/><recordID>123456789_77969</recordID></qualifieddc>
|
id |
jyx.123456789_77969
|
language |
eng
|
last_indexed |
2024-05-13T20:05:06Z
|
main_date |
2021-01-01T00:00:00Z
|
main_date_str |
2021
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/77969\/1\/URN%3aNBN%3afi%3ajyu-202109305033.pdf","text":"URN:NBN:fi:jyu-202109305033.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
5012
|
publication_first_indexed |
2021-09-30T20:00:56Z
|
publishDate |
2021
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Romppanen, Vesa
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
markerless
countermovement jump
deeplabcut
toistettavuus
syväoppiminen
koneoppiminen
biomekaniikka
nivelet
liikeanalyysi
hyppääminen
liikeoppi
algoritmit
repeatability
deep learning
machine learning
biomechanics
joints (musculoskeletal system)
motion analysis
jumping
kinematics
algorithms
|
subject_txtF |
Biomekaniikka
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_77969&index=0&size=large
|
title |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
title_full |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
title_fullStr |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
title_full_unstemmed |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
title_short |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
title_sort |
between and within day repeatability of markerless 2d motion analysis using deep neural networks
|
title_txtP |
Between- and within-day repeatability of markerless 2D motion analysis using deep neural networks
|
topic |
markerless
countermovement jump
deeplabcut
toistettavuus
syväoppiminen
koneoppiminen
biomekaniikka
nivelet
liikeanalyysi
hyppääminen
liikeoppi
algoritmit
repeatability
deep learning
machine learning
biomechanics
joints (musculoskeletal system)
motion analysis
jumping
kinematics
algorithms
|
topic_facet |
algorithms
algoritmit
biomechanics
biomekaniikka
countermovement jump
deep learning
deeplabcut
hyppääminen
joints (musculoskeletal system)
jumping
kinematics
koneoppiminen
liikeanalyysi
liikeoppi
machine learning
markerless
motion analysis
nivelet
repeatability
syväoppiminen
toistettavuus
|
url |
https://jyx.jyu.fi/handle/123456789/77969
http://www.urn.fi/URN:NBN:fi:jyu-202109305033
|
work_keys_str_mv |
AT romppanenvesa betweenandwithindayrepeatabilityofmarkerless2dmotionanalysisusingdeepneuralnetwork
|