Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa

Tutkielma käsittelee tukivektorikoneen luokitteluongelman valinnan merkitystä osakemarkkinoiden ennustamisessa. Aikaisempia tutkimuksia erilaisista luokitteluongelmista on vähän, mikä nostaa esille tarpeen tämän aiheen tutkimisen. Uutta keskihajontasuhteutettua luokitteluongelmaa verrataan aikaisemm...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Leskinen, Jarre
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:fin
Julkaistu: 2021
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/77792
_version_ 1826225715594395648
author Leskinen, Jarre
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Leskinen, Jarre Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Leskinen, Jarre Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Leskinen, Jarre
datasource_str_mv jyx
description Tutkielma käsittelee tukivektorikoneen luokitteluongelman valinnan merkitystä osakemarkkinoiden ennustamisessa. Aikaisempia tutkimuksia erilaisista luokitteluongelmista on vähän, mikä nostaa esille tarpeen tämän aiheen tutkimisen. Uutta keskihajontasuhteutettua luokitteluongelmaa verrataan aikaisemmissa tutkimuksissa suosittuun seuraavan päivän suuntaa ennustavaan luokitteluongelmaan. Tukivektorikoneiden ominaisuudet valitaan aikaisempien tutkimusten perusteella ja niiden tarkkuutta verrataan toisiinsa sekä vertailuindeksinä käytettävään DAX-osakeindeksiin. Ennustemalleista muodostetaan aktiivisia kaupankäyntistrategioita, joita analysoidaan taustatestaamalla käyttäen historiallista kurssidataa. Tulokset osoittavat uuden keskihajontasuhteutetun luokitteluongelman johtavan huomattavasti parempiin tuloksiin sekä korostavan tarvetta jatkotutkimuksille erilaisista luokitteluongelmista. This thesis examines the impact of support vector machine's classification problem selection on stock market forecasting. Previous research on different types of classification problems has been minimal which raises the need for research on this topic. A new standard deviation adjusted classification problem is compared against a popular next day's direction forecasting classification problem. The feature engineering for the support vector machines is based on previous research and they are compared against each other as well as the benchmark stock market index DAX. The forecasting models are used to form active trading strategies that are analysed with backtesting using historical price data. The results demonstrate that the new standard deviation adjusted classification problem produces significantly better results and highlight the need for further studies on different types of classification problems.
first_indexed 2021-09-14T20:04:49Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "M\u00e4kinen, Raino", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Leskinen, Jarre", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-09-14T07:05:05Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-09-14T07:05:05Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/77792", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Tutkielma k\u00e4sittelee tukivektorikoneen luokitteluongelman valinnan merkityst\u00e4 osakemarkkinoiden ennustamisessa. Aikaisempia tutkimuksia erilaisista luokitteluongelmista on v\u00e4h\u00e4n, mik\u00e4 nostaa esille tarpeen t\u00e4m\u00e4n aiheen tutkimisen. Uutta keskihajontasuhteutettua luokitteluongelmaa verrataan aikaisemmissa tutkimuksissa suosittuun seuraavan p\u00e4iv\u00e4n suuntaa ennustavaan luokitteluongelmaan. Tukivektorikoneiden ominaisuudet valitaan aikaisempien tutkimusten perusteella ja niiden tarkkuutta verrataan toisiinsa sek\u00e4 vertailuindeksin\u00e4 k\u00e4ytett\u00e4v\u00e4\u00e4n DAX-osakeindeksiin. Ennustemalleista muodostetaan aktiivisia kaupank\u00e4yntistrategioita, joita analysoidaan taustatestaamalla k\u00e4ytt\u00e4en historiallista kurssidataa. Tulokset osoittavat uuden keskihajontasuhteutetun luokitteluongelman johtavan huomattavasti parempiin tuloksiin sek\u00e4 korostavan tarvetta jatkotutkimuksille erilaisista luokitteluongelmista.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This thesis examines the impact of support vector machine's classification problem selection on stock market forecasting. Previous research on different types of classification problems has been minimal which raises the need for research on this topic. A new standard deviation adjusted classification problem is compared against a popular next day's direction forecasting classification problem. The feature engineering for the support vector machines is based on previous research and they are compared against each other as well as the benchmark stock market index DAX. The forecasting models are used to form active trading strategies that are analysed with backtesting using historical price data. The results demonstrate that the new standard deviation adjusted classification problem produces significantly better results and highlight the need for further studies on different types of classification problems.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-09-14T07:05:04Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-09-14T07:05:05Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "58", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "tukivektorikone", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202109144873", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "arvopaperimarkkinat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "osakkeet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "volatiliteetti", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_77792
language fin
last_indexed 2025-02-18T10:55:09Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/9b9af88f-a608-456c-9c82-a6c335c90889\/download","text":"URN:NBN:fi:jyu-202109144873.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Leskinen, Jarre Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa tukivektorikone Tietotekniikka Mathematical Information Technology 602 arvopaperimarkkinat osakkeet koneoppiminen volatiliteetti
title Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_full Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_fullStr Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_full_unstemmed Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_short Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_sort tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
title_txtP Tukivektorikoneen luokitteluongelman valinnan merkitys osakemarkkinoiden ennustamisessa
topic tukivektorikone Tietotekniikka Mathematical Information Technology 602 arvopaperimarkkinat osakkeet koneoppiminen volatiliteetti
topic_facet 602 Mathematical Information Technology Tietotekniikka arvopaperimarkkinat koneoppiminen osakkeet tukivektorikone volatiliteetti
url https://jyx.jyu.fi/handle/123456789/77792 http://www.urn.fi/URN:NBN:fi:jyu-202109144873
work_keys_str_mv AT leskinenjarre tukivektorikoneenluokitteluongelmanvalinnanmerkitysosakemarkkinoidenennustamisessa