Deep learning in gait analysis the effect of marker presence in neural network training to kinematic outcomes

Bibliographic Details
Main Author: Uitto, Roope
Other Authors: Liikuntatieteellinen tiedekunta, Faculty of Sport and Health Sciences, Liikunta- ja terveystieteet, Sport and Health Sciences, Jyväskylän yliopisto, University of Jyväskylä, Biomekaniikka, Biomechanics, 5012
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/77355
_version_ 1809901060876140544
annif_keywords_txtF_mv neural networks (information technology) machine learning deep learning kinematics walking (motion)
annif_uris_txtF_mv http://www.yso.fi/onto/yso/p7292 http://www.yso.fi/onto/yso/p21846 http://www.yso.fi/onto/yso/p39324 http://www.yso.fi/onto/yso/p16028 http://www.yso.fi/onto/yso/p3706
author Uitto, Roope
author2 Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä Biomekaniikka Biomechanics 5012
author_facet Uitto, Roope Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä Biomekaniikka Biomechanics 5012 Uitto, Roope
author_sort Uitto, Roope
building Jyväskylän yliopisto JYX-julkaisuarkisto
datasource_str_mv jyx
department_txtF Liikunta- ja terveystieteet
faculty_txtF Liikuntatieteellinen tiedekunta
first_indexed 2021-08-12T20:02:35Z
format Pro gradu
format_ext_str_mv Opinnäyte Pro gradu
free_online_boolean 1
fullrecord <?xml version="1.0"?> <qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes</title><creator>Uitto, Roope</creator><contributor type="tiedekunta" lang="fi">Liikuntatieteellinen tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Sport and Health Sciences</contributor><contributor type="laitos" lang="fi">Liikunta- ja terveystieteet</contributor><contributor type="laitos" lang="en">Sport and Health Sciences</contributor><contributor type="yliopisto" lang="fi">Jyv&#xE4;skyl&#xE4;n yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyv&#xE4;skyl&#xE4;</contributor><contributor type="oppiaine" lang="fi">Biomekaniikka</contributor><contributor type="oppiaine" lang="en">Biomechanics</contributor><contributor type="oppiainekoodi">5012</contributor><subject type="yso">syv&#xE4;oppiminen</subject><subject type="yso">luotettavuus</subject><subject type="yso">liikeoppi</subject><subject type="yso">liikeanalyysi</subject><subject type="yso">deep learning</subject><subject type="yso">reliability (general)</subject><subject type="yso">kinematics</subject><subject type="yso">motion analysis</subject><available>2021-08-12T06:08:29Z</available><issued>2021</issued><type lang="fi">Pro gradu -tutkielma</type><type lang="en">Master&#x2019;s thesis</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/77355</identifier><identifier type="urn">URN:NBN:fi:jyu-202108124521</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekij&#xE4;noikeuss&#xE4;&#xE4;nn&#xF6;sten alainen. Teosta voi lukea ja tulostaa henkil&#xF6;kohtaista k&#xE4;ytt&#xF6;&#xE4; varten. K&#xE4;ytt&#xF6; kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-202108124521</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/77355/1/URN%3aNBN%3afi%3ajyu-202108124521.pdf" name="URN:NBN:fi:jyu-202108124521.pdf" type="application/pdf" length="4136737" sequence="1"/><recordID>123456789_77355</recordID></qualifieddc>
id jyx.123456789_77355
language eng
last_indexed 2024-09-03T10:49:34Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/77355\/1\/URN%3aNBN%3afi%3ajyu-202108124521.pdf","text":"URN:NBN:fi:jyu-202108124521.pdf","source":"jyx","mediaType":"application\/pdf"}
oppiainekoodi_txtF 5012
publication_first_indexed 2021-08-12T20:02:35Z
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Uitto, Roope Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes syväoppiminen luotettavuus liikeoppi liikeanalyysi deep learning reliability (general) kinematics motion analysis
subject_txtF Biomekaniikka
thumbnail https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_77355&index=0&size=large
title Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
title_full Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
title_fullStr Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
title_full_unstemmed Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
title_short Deep learning in gait analysis
title_sort deep learning in gait analysis the effect of marker presence in neural network training to kinematic outcomes
title_sub the effect of marker presence in neural network training to kinematic outcomes
title_txtP Deep learning in gait analysis : the effect of marker presence in neural network training to kinematic outcomes
topic syväoppiminen luotettavuus liikeoppi liikeanalyysi deep learning reliability (general) kinematics motion analysis
topic_facet deep learning kinematics liikeanalyysi liikeoppi luotettavuus motion analysis reliability (general) syväoppiminen
url https://jyx.jyu.fi/handle/123456789/77355 http://www.urn.fi/URN:NBN:fi:jyu-202108124521
work_keys_str_mv AT uittoroope deeplearningingaitanalysistheeffectofmarkerpresenceinneuralnetworktrainingtokinematic