Reinforcing strong coupling with hybrid microcavities for polariton chemistry application

The light-matter coupling is a physical phenomenon in which optical modes of light are in resonance with the energy level of matter, thus enabling exchange of energy between them. The strong light-matter coupling is achieved when energy levels of the matter are in resonance with confined light mode...

Full description

Bibliographic Details
Main Author: Qureshi, Hassan Ali
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/77251
_version_ 1828193065299345408
author Qureshi, Hassan Ali
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Qureshi, Hassan Ali Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Qureshi, Hassan Ali Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Qureshi, Hassan Ali
datasource_str_mv jyx
description The light-matter coupling is a physical phenomenon in which optical modes of light are in resonance with the energy level of matter, thus enabling exchange of energy between them. The strong light-matter coupling is achieved when energy levels of the matter are in resonance with confined light mode and they start exchanging energy in such a way that the rate of this energy exchange overcomes the energy dissipation rate of the system. This usually needs a resonance with a highly confined light mode. The strongly light-matter coupled system acquires new hybrid energy levels that are different from the matter’s energy levels. This regime offers a wide range of applications in optoelectronics and chemistry. The strong coupling has made possible the manipulation of chemical reactions without changing the chemical environment of the system, giving rise to a new branch of chemistry known as the polariton chemistry. This thesis provides comprehensive study on the enhancement of strong coupling by using hybrid cavities made up of two different materials couple to the same confined optical mode. The study includes the absorption evolution of the HBQ molecule system and a hybrid system consisting of HBQ molecule and polycrystalline ZnO. The strong coupling was achieved by depositing molecules inside the Fabry- Pérot cavity. The Rabi split energies of HBQ cavities were 205 meV, 228 meV, and 279 eV whereas, HBQ-ZnO hybrid cavities showed Rabi split energies of 300 meV and 310 meV. The study also includes the effect of strong coupling by changing the cavity geometry. The Rabi split energies in modified geometry were observed as 380 meV, 430 meV, and 490 meV.
first_indexed 2021-08-02T20:01:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Toppari, Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Markesevic, Nemanja", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Qureshi, Hassan Ali", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-08-02T07:27:42Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-08-02T07:27:42Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/77251", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The light-matter coupling is a physical phenomenon in which optical modes of light\nare in resonance with the energy level of matter, thus enabling exchange of energy\nbetween them. The strong light-matter coupling is achieved when energy levels of\nthe matter are in resonance with confined light mode and they start exchanging\nenergy in such a way that the rate of this energy exchange overcomes the energy\ndissipation rate of the system. This usually needs a resonance with a highly confined\nlight mode. The strongly light-matter coupled system acquires new hybrid energy\nlevels that are different from the matter\u2019s energy levels. This regime offers a wide\nrange of applications in optoelectronics and chemistry. The strong coupling has\nmade possible the manipulation of chemical reactions without changing the chemical\nenvironment of the system, giving rise to a new branch of chemistry known as the\npolariton chemistry.\nThis thesis provides comprehensive study on the enhancement of strong coupling\nby using hybrid cavities made up of two different materials couple to the same\nconfined optical mode. The study includes the absorption evolution of the HBQ\nmolecule system and a hybrid system consisting of HBQ molecule and polycrystalline\nZnO. The strong coupling was achieved by depositing molecules inside the Fabry-\nP\u00e9rot cavity. The Rabi split energies of HBQ cavities were 205 meV, 228 meV, and\n279 eV whereas, HBQ-ZnO hybrid cavities showed Rabi split energies of 300 meV\nand 310 meV. The study also includes the effect of strong coupling by changing the\ncavity geometry. The Rabi split energies in modified geometry were observed as 380\nmeV, 430 meV, and 490 meV.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-08-02T07:27:42Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-08-02T07:27:42Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "49", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "strong coupling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "polariton chemistry", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hybrid microcavities", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "optical doping", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "10-Hydroxybenzo[h]quinoline", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Reinforcing strong coupling with hybrid microcavities for polariton chemistry application", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202108024419", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sinkkioksidi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "polaritonit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ohutkalvot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optiset ominaisuudet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sinkkioksidi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optoelektroniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "zinc oxide", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "polaritons", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "thin films", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optical properties", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "zinc oxide", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optoelectronics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_77251
language eng
last_indexed 2025-03-31T20:01:30Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/375d663e-55e5-4019-aa59-1bb277654262\/download","text":"URN:NBN:fi:jyu-202108024419.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Qureshi, Hassan Ali Reinforcing strong coupling with hybrid microcavities for polariton chemistry application strong coupling polariton chemistry hybrid microcavities optical doping 10-Hydroxybenzo[h]quinoline Fysiikka Physics 4021 sinkkioksidi polaritonit fysiikka ohutkalvot optiset ominaisuudet optoelektroniikka zinc oxide polaritons physics thin films optical properties optoelectronics
title Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_full Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_fullStr Reinforcing strong coupling with hybrid microcavities for polariton chemistry application Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_full_unstemmed Reinforcing strong coupling with hybrid microcavities for polariton chemistry application Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_short Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_sort reinforcing strong coupling with hybrid microcavities for polariton chemistry application
title_txtP Reinforcing strong coupling with hybrid microcavities for polariton chemistry application
topic strong coupling polariton chemistry hybrid microcavities optical doping 10-Hydroxybenzo[h]quinoline Fysiikka Physics 4021 sinkkioksidi polaritonit fysiikka ohutkalvot optiset ominaisuudet optoelektroniikka zinc oxide polaritons physics thin films optical properties optoelectronics
topic_facet 10-Hydroxybenzo[h]quinoline 4021 Fysiikka Physics fysiikka hybrid microcavities ohutkalvot optical doping optical properties optiset ominaisuudet optoelectronics optoelektroniikka physics polariton chemistry polaritonit polaritons sinkkioksidi strong coupling thin films zinc oxide
url https://jyx.jyu.fi/handle/123456789/77251 http://www.urn.fi/URN:NBN:fi:jyu-202108024419
work_keys_str_mv AT qureshihassanali reinforcingstrongcouplingwithhybridmicrocavitiesforpolaritonchemistryapplicatio