fullrecord |
[{"key": "dc.contributor.advisor", "value": "Skippari, Mika", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Karhu, Nelli", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-06-04T11:50:14Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-06-04T11:50:14Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/76251", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Organisaatiot ovat kiinnostuneet big datasta ja siit\u00e4, miten ne voivat ansaita sill\u00e4 rahaa. Sit\u00e4 varten organisaatio tarvitsee liiketoimintamallin. Liiketoimintamallia luotaessa on t\u00e4rke\u00e4\u00e4 ymm\u00e4rt\u00e4\u00e4 mik\u00e4 IoT:sta ker\u00e4tyss\u00e4 big datassa on arvokasta ja miten sit\u00e4 pit\u00e4isi analysoida ja jatkojalostaa, sek\u00e4 miten luotu arvo saadaan myyty\u00e4. Tiedon arvoa ja sen luontia on tutkittu aiemminkin, mutta IoT:lla ker\u00e4tyn tiedon tuoma uusi n\u00e4k\u00f6kulma voi tarjota uusia oivalluksia big data -ominaisuuksista. On my\u00f6s mielenkiintoista selvitt\u00e4\u00e4, miten IoT muuttaa big datan arvonluontiprosessia.\nBig datan kaupallistamista on hyv\u00e4 tutkia lis\u00e4\u00e4 IoT-kontekstissa, sill\u00e4 IoT ja sen liiketoimintamallitutkimukset ovat viel\u00e4 suhteellisen uusia. T\u00e4m\u00e4 opinn\u00e4ytety\u00f6 vastaa t\u00e4h\u00e4n tarpeeseen tutkimalla big dataa ja IoT:ta tutkimuskysymyksell\u00e4: millaisia liiketoimintamalleja yritykset k\u00e4ytt\u00e4v\u00e4t arvon haltuunottamiseksi big data -ratkaisuilla, kun tietoja ker\u00e4t\u00e4\u00e4n IoT-laitteiden avulla?\nBig data tarvitsee usein jonkinlaista k\u00e4sittely\u00e4 tai analysointia luodakseen oivalluksia ja arvoa. Arvon luomisessa ja haltuunotossa on t\u00e4rke\u00e4\u00e4 ymm\u00e4rt\u00e4\u00e4 mik\u00e4 sen arvo on asiakkaalle. T\u00e4ss\u00e4 tutkimuksessa yritet\u00e4\u00e4n t\u00e4ten l\u00f6yt\u00e4\u00e4 my\u00f6s vastauksia kysymyksiin: Mink\u00e4laista big dataa pidet\u00e4\u00e4n arvokkaana asiakkaalle? ja Kuinka big data -arvo luodaan ja miten IoT muuttaa arvon luomista ja haltuunottoa?\nTeoriaosuus koostuu arvonluonti- ja haltuunottoteoriasta. Ensin k\u00e4sitell\u00e4\u00e4n big dataa ja IoT:ta, mink\u00e4 j\u00e4lkeen tutkitaan niiden arvoa ja arvonluontia. Lis\u00e4ksi arvon haltuunottoa tutkitaan keskittyen big datan kaupallistamisen ja IoT:n liiketoimintamalliteoriaan.\nKirjallisuuskatsauksen lis\u00e4ksi laadullisessa tutkimusosuudessa tutkimuskysymyksiin haetaan vastausta tekem\u00e4ll\u00e4 kuusi puolistrukturoitua teemahaastattelua. Haastateltavana on Suomessa toimivia b-to-b yrityksi\u00e4, jotka tarjoavat big data -tuotetta, jossa tiedot ker\u00e4t\u00e4\u00e4n IoT:n avulla. Tuloksia analysoi-daan temaattisella analyysimenetelm\u00e4ll\u00e4.\nT\u00e4m\u00e4n tutkimuksen tulokset paljastavat, ett\u00e4 tieto, jolla voidaan ennustaa tulevaisuutta tai mallintaa ymp\u00e4r\u00f6iv\u00e4\u00e4 maailmaa, pidet\u00e4\u00e4n arvokkaana. IoT antaa reaaliaikaista tietoa, joka auttaa est\u00e4m\u00e4\u00e4n arvon menetyst\u00e4 tiedonkeruun ja analysoinnin k\u00e4sittelyviiveiss\u00e4. Itse IoT n\u00e4hd\u00e4\u00e4n suurelta osin keinona ker\u00e4t\u00e4 tietoja, mutta se my\u00f6s edesauttaa yksinkertaistamaan ja helpottamaan tietojen arvonluontia ja k\u00e4sittely\u00e4.\nYritykset n\u00e4kev\u00e4t, ett\u00e4 heid\u00e4n big data -tarjontansa on paljon muutakin kuin pelk\u00e4n datan tarjontaa, se on asiakkaiden ongelmien ratkaisua. Tarjonnalla he sek\u00e4 luovat asiakkailleen lis\u00e4arvoa ett\u00e4 tukevat oman yrityksen p\u00e4\u00e4tuotteiden myynti\u00e4. Palvelun toteutuksessa k\u00e4ytet\u00e4\u00e4n usein Saas-liiketoimintamallia (Software as a Service), jossa asiakkaan ei tarvitse hankkia tarvittavia ohjelmistoja itse, vaan toimittaja tarjoaa ne palveluna. Mielenkiintoinen l\u00f6yt\u00f6 on my\u00f6s se, ett\u00e4 suuremmissa yrityksis-s\u00e4, joissa big data ei ole yrityksen t\u00e4rkein tulonl\u00e4hde, IoT:t\u00e4 k\u00e4ytet\u00e4\u00e4n tuottamaan uusia digitaalisia toi-mintoja ja palveluita olemassa oleviin tuotteisiin. Toisaalta pienemmiss\u00e4 yrityksiss\u00e4, joissa palvelu on heid\u00e4n t\u00e4rkein tulonl\u00e4hteens\u00e4, keskityt\u00e4\u00e4n sensoridatan myyntiin tai digitaalisiin palveluihin, joissa IoT komponentit ovat osa palvelun hintaa. Suurin osa haastatelluista yrityksist\u00e4 piti tarjouksiaan ainutlaatuisina v\u00e4hint\u00e4\u00e4n omalla alallaan. He eiv\u00e4t kuitenkaan usko, ett\u00e4 heid\u00e4n liiketoimintamallinsa olisi ainutlaatuinen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Organizations have taken an interest in big data and how they can monetize it. When monetizing big data, it can create a new way to do business and to accomplish it successfully, companies need a busi-ness model to do so. Value creation is important when capturing value and considering a business mod-el, so it is beneficial to understand better where the value stands in big data, specifically data that is gathered form an IoT device. Data\u2019s value and value creation has been studied before but the new con-text of IoT gathered data can provide new insights of the characteristics of valuable big data and add to the value conversation. It is also interesting to find out how IoT changes the value creation process of big data.\n\tThere is a need to study big data monetization in the context of IoT. IoT and its business model studies are still relatively new, so more research is needed. This research answers that need by studying big data and IoT with a research question \u2019What kinds of business models do companies use for value capture with big data solutions when the data is collected from IoT devices?\u2019. \n\tData often needs some kind of processing or analysing to give insights and to create value. With value creation and capturing the value itself is an important aspect and this study also tries to find an-swers to questions: \u2018What kind of big data is considered to be valuable for the customer?\u2019 and \u2018How is big data value created and how does IoT change the value creation and capture big data?\u2019. The research is in the context of b-to-b companies that operate in Finland, and the research questions are studied though the seller\u2019s point of view.\n\tThe theoretical background consists of value creation and capture theory. First an understanding of big data and IoT are made after which their value and its creation are examined. Then value capture is studied focusing on the business model theory of big data monetization and IoT. \n\tIn addition to literature review, a qualitative research is conducted to answer the research ques-tions. The research consists of six semi-structured thematic interviews of b-to-b companies that offer a big data product where the data is gathered by the means of IoT, and the resulting research data is ana-lysed with a thematic analysing method. \n\tThe results of this study reveal that information that can be used to predict the future or model the world around us is considered valuable. IoT provides real time data which can help to prevent value loss in data collection and processing latency. IoT itself is largely seen as a means of collecting data but it also helps by simplifying and making the value creation of the data and its processing easier.\n\tThe companies see that their big data offering is more valuable than just the value of the data, it is seen as a solution to their customers\u2019 problems. With the offer, they both create add value for their customers and support the sales of their company's main products.\tTo capture this value a SaaS-business model (software as a service) is often used, in which the customer does not have to buy the necessary software their-self, but the supplier provides it as a service. Another interesting finding is that in larger companies where big data is not the company\u2019s main source of revenue, IoT is used to provide new digital functions and services to the existing product. On the other hand, smaller companies where service is their main source of revenue focus on selling sensor data or digital services where IoT compo-nents are part of the service price. Most of the companies thought their offers to be unique, or at least in their own industry. However, they don\u2019t believe that their business model is unique.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2021-06-04T11:50:14Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-06-04T11:50:14Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "57", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "IoT", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "value capture", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Big data value creation and capture with an IoT solution", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202106043476", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4 University School of Business and Economics", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Jyv\u00e4skyl\u00e4n yliopiston kauppakorkeakoulu", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Taloustieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Business and Economics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Markkinointi", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Marketing", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "20423", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "arvonluonti", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "liiketoimintamallit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "esineiden internet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "value creation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "business models", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Internet of things", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|