Exploring value in eCommerce artificial intelligence and recommendation systems

Tekoälyn päämääränä on saavuttaa järjestelmä, joka jäljittelee ihmisen luonnollista älykkyyttä. Suosittelujärjestelmä on tieteenala sekä tekoälyä hyödyntävä järjestelmä. Suosittelujärjestelmä tarjoaa käyttäjilleen personoitua sisältöä, kuten tuotteita. Tässä pro gradu -tutkielmassa tutkitaan kuinka...

Full description

Bibliographic Details
Main Author: Änäkkälä, Tuomas
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/75678
_version_ 1826225754892926976
author Änäkkälä, Tuomas
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Änäkkälä, Tuomas Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Änäkkälä, Tuomas Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Änäkkälä, Tuomas
datasource_str_mv jyx
description Tekoälyn päämääränä on saavuttaa järjestelmä, joka jäljittelee ihmisen luonnollista älykkyyttä. Suosittelujärjestelmä on tieteenala sekä tekoälyä hyödyntävä järjestelmä. Suosittelujärjestelmä tarjoaa käyttäjilleen personoitua sisältöä, kuten tuotteita. Tässä pro gradu -tutkielmassa tutkitaan kuinka tekoälyn sovellutukset luovat arvoa verkkokauppiaille sekä mitä suosittelujärjestelmien arvolupaukset ovat. Tutkimus toteutettiin laadullisena tapaustutkimuksena, johon osallistui kymmenen haastateltavaa kahdesta eri yrityksestä. Haastateltavat edustivat verkkokauppiasta sekä verkkokauppiaan palveluntarjoajaa. Tutkimuksessa selvitettiin, mitä haastateltavat kokevat tekoälyn olevan. Tutkimuksessa identifioitiin verkkokauppiaille tärkeimmät tekoälyn osa-alueet ominaisuuksineen sekä arvolupauksineen. Suosittelujärjestelmien osalta empiirisessä osiossa kirjallisuudesta löytyneitä arvolupauksia vahvistettiin. Empiirinen osio kykeni tunnistamaan uusia arvolupauksia. Suosittelujärjestelmä muun muassa personoi asiakkaiden ostokokemukset, poistaa muureja ostamisen tieltä, vähentää verkkokauppiaan manuaalista työmäärää sekä parantaa verkkokaupan brändikuvaa. Suosittelujärjestelmien osalta empiirinen osio selvitti myös, kuinka tuotesuosittelujärjestelmät parhaiten luovat arvoa, sekä kuinka niiden luomaa arvoa tulisi mitata. Artificial intelligence (AI) aims to develop a system which exhibits natural characteristics we associate to intelligent human behavior. Recommendation systems are a research area and AI applications. A recommendation system offers personalized content, such as products for end users. This Master’s Thesis explores how AI applications create value for eCommerce merchants and what are the value propositions of recommendation systems. This research was conducted as a qualitative case study with ten interviewees from two companies. Interviewees represented merchant and supplier organizations. Research explained what interviewees felt AI to mean. Research identified most important subfields of AI for eCommerce merchants, in addition with features and value propositions. For recommendation systems value propositions identified from literature were strengthened. Empirical part was able to identify new value propositions. A recommendation system can personalize shopping experience of customers, remove barriers from making successful transactions, reduce amount of manual work and improve brand image of the eCommerce store. Regarding recommendation systems, empirical research also indicated how recommendation systems should be utilized and how should value be measured.
first_indexed 2024-09-11T08:51:58Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Frank, Lauri", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Luoma, Eetu", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "\u00c4n\u00e4kk\u00e4l\u00e4, Tuomas", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-05-17T08:30:00Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-05-17T08:30:00Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/75678", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Teko\u00e4lyn p\u00e4\u00e4m\u00e4\u00e4r\u00e4n\u00e4 on saavuttaa j\u00e4rjestelm\u00e4, joka j\u00e4ljittelee ihmisen luonnollista \u00e4lykkyytt\u00e4. Suositteluj\u00e4rjestelm\u00e4 on tieteenala sek\u00e4 teko\u00e4ly\u00e4 hy\u00f6dynt\u00e4v\u00e4 j\u00e4rjestelm\u00e4. Suositteluj\u00e4rjestelm\u00e4 tarjoaa k\u00e4ytt\u00e4jilleen personoitua sis\u00e4lt\u00f6\u00e4, kuten tuotteita. T\u00e4ss\u00e4 pro gradu -tutkielmassa tutkitaan kuinka teko\u00e4lyn sovellutukset luovat arvoa verkkokauppiaille sek\u00e4 mit\u00e4 suositteluj\u00e4rjestelmien arvolupaukset ovat. Tutkimus toteutettiin laadullisena tapaustutkimuksena, johon osallistui kymmenen haastateltavaa kahdesta eri yrityksest\u00e4. Haastateltavat edustivat verkkokauppiasta sek\u00e4 verkkokauppiaan palveluntarjoajaa. Tutkimuksessa selvitettiin, mit\u00e4 haastateltavat kokevat teko\u00e4lyn olevan. Tutkimuksessa identifioitiin verkkokauppiaille t\u00e4rkeimm\u00e4t teko\u00e4lyn osa-alueet ominaisuuksineen sek\u00e4 arvolupauksineen. Suositteluj\u00e4rjestelmien osalta empiirisess\u00e4 osiossa kirjallisuudesta l\u00f6ytyneit\u00e4 arvolupauksia vahvistettiin. Empiirinen osio kykeni tunnistamaan uusia arvolupauksia. Suositteluj\u00e4rjestelm\u00e4 muun muassa personoi asiakkaiden ostokokemukset, poistaa muureja ostamisen tielt\u00e4, v\u00e4hent\u00e4\u00e4 verkkokauppiaan manuaalista ty\u00f6m\u00e4\u00e4r\u00e4\u00e4 sek\u00e4 parantaa verkkokaupan br\u00e4ndikuvaa. Suositteluj\u00e4rjestelmien osalta empiirinen osio selvitti my\u00f6s, kuinka tuotesuositteluj\u00e4rjestelm\u00e4t parhaiten luovat arvoa, sek\u00e4 kuinka niiden luomaa arvoa tulisi mitata.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Artificial intelligence (AI) aims to develop a system which exhibits natural characteristics we associate to intelligent human behavior. Recommendation systems are a research area and AI applications. A recommendation system offers personalized content, such as products for end users. This Master\u2019s Thesis explores how AI applications create value for eCommerce merchants and what are the value propositions of recommendation systems. This research was conducted as a qualitative case study with ten interviewees from two companies. Interviewees represented merchant and supplier organizations. Research explained what interviewees felt AI to mean. Research identified most important subfields of AI for eCommerce merchants, in addition with features and value propositions. For recommendation systems value propositions identified from literature were strengthened. Empirical part was able to identify new value propositions. A recommendation system can personalize shopping experience of customers, remove barriers from making successful transactions, reduce amount of manual work and improve brand image of the eCommerce store. Regarding recommendation systems, empirical research also indicated how recommendation systems should be utilized and how should value be measured.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-05-17T08:30:00Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-05-17T08:30:00Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "76", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "value co-creation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "value propositions of artificial intelligence", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "value propositions of recommendation systems", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Exploring value in eCommerce artificial intelligence and recommendation systems", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202105172951", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "verkkokauppa", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "suositteluj\u00e4rjestelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "arvonluonti", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "electronic commerce", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "recommender systems", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "value creation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_75678
language eng
last_indexed 2025-02-18T10:56:43Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/1e2f3768-162c-49fd-a3aa-c34beb60bc2b\/download","text":"URN:NBN:fi:jyu-202105172951.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Änäkkälä, Tuomas Exploring value in eCommerce artificial intelligence and recommendation systems value co-creation value propositions of artificial intelligence value propositions of recommendation systems Tietojärjestelmätiede Information Systems Science 601 verkkokauppa tekoäly suosittelujärjestelmät arvonluonti electronic commerce artificial intelligence recommender systems value creation
title Exploring value in eCommerce artificial intelligence and recommendation systems
title_full Exploring value in eCommerce artificial intelligence and recommendation systems
title_fullStr Exploring value in eCommerce artificial intelligence and recommendation systems Exploring value in eCommerce artificial intelligence and recommendation systems
title_full_unstemmed Exploring value in eCommerce artificial intelligence and recommendation systems Exploring value in eCommerce artificial intelligence and recommendation systems
title_short Exploring value in eCommerce artificial intelligence and recommendation systems
title_sort exploring value in ecommerce artificial intelligence and recommendation systems
title_txtP Exploring value in eCommerce artificial intelligence and recommendation systems
topic value co-creation value propositions of artificial intelligence value propositions of recommendation systems Tietojärjestelmätiede Information Systems Science 601 verkkokauppa tekoäly suosittelujärjestelmät arvonluonti electronic commerce artificial intelligence recommender systems value creation
topic_facet 601 Information Systems Science Tietojärjestelmätiede artificial intelligence arvonluonti electronic commerce recommender systems suosittelujärjestelmät tekoäly value co-creation value creation value propositions of artificial intelligence value propositions of recommendation systems verkkokauppa
url https://jyx.jyu.fi/handle/123456789/75678 http://www.urn.fi/URN:NBN:fi:jyu-202105172951
work_keys_str_mv AT änäkkälätuomas exploringvalueinecommerceartificialintelligenceandrecommendationsystems