fullrecord |
[{"key": "dc.contributor.advisor", "value": "Taipalus, Toni", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Erkkil\u00e4, Hanna", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-05-11T05:38:57Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-05-11T05:38:57Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/75423", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Massadata ja sen hy\u00f6dynt\u00e4minen analytiikan keinoin on noussut viimeisten vuosikymmenten aikana yhdeksi keskeisimm\u00e4ksi mielenkiinnon kohteeksi sek\u00e4 tiedemaailmassa ett\u00e4 liiketoiminnan eri osa-alueilla. Massadataa kertyy yh\u00e4 kasvavalla nopeudella erilaisten teknologioiden k\u00e4yt\u00f6n jatkuvasti lis\u00e4\u00e4ntyess\u00e4. Massadata on keskeinen k\u00e4site my\u00f6s terveydenhuollossa, miss\u00e4 terveysdataa kertyy sek\u00e4 terveydenhuollon organisaatioiden tietoj\u00e4rjestelmiin, ett\u00e4 terveydenhuollon ulkopuolella esimerkiksi erilaisten puettavien teknologioiden kautta. Terveysdatan hy\u00f6dynt\u00e4misell\u00e4 data-analytiikan keinoin n\u00e4hd\u00e4\u00e4n terveydenhuollossa paljon erilaisia k\u00e4ytt\u00f6kohteita, kuten sairauksien varhaisen tunnistamisen ja diagnostiikan parantaminen, yksil\u00f6kohtaisempien hoitomenetelmien kehitt\u00e4minen, terveydenhuollon ammattilaisten p\u00e4\u00e4t\u00f6ksenteon tukeminen ja terveydenhuollon johtamisen ja resurssien optimoinnin kehitt\u00e4minen.\nTutkielman tarkoituksena on tarkastella data-analytiikan ja terveyden-huollon leikkauspintaa tieteellisess\u00e4 kirjallisuudessa ja kartoittaa aiheesta tehtyj\u00e4 tieteellisi\u00e4 julkaisuja. Tutkimusongelmana on selvitt\u00e4\u00e4, milloin ja mill\u00e4 foorumeilla aiheesta on julkaistu tutkimuksia ja mit\u00e4 aihepiirej\u00e4 tutkimukset k\u00e4sittelev\u00e4t. Tutkimusaineistona on 176 tieteellist\u00e4 julkaisua, jotka lajiteltiin systemaattisen kirjallisuuskartoituksen menetelm\u00e4ll\u00e4. Aineiston lajittelun perusteella todettiin, ett\u00e4 data-analytiikka terveydenhuollossa on selke\u00e4sti ajankohtainen aihe, sill\u00e4 viimeisen viiden vuoden aikana aiheeseen liittyvien julkaisujen m\u00e4\u00e4r\u00e4 on selv\u00e4sti lis\u00e4\u00e4ntynyt. Aiheeseen liittyvi\u00e4 tieteellisi\u00e4 julkaisuja on julkaistu hyvin laajasti eri tieteellisill\u00e4 foorumeilla ja aineistossa esiintyy melko tasaisesti sek\u00e4 lehtiartikkeleita ett\u00e4 konferenssijulkaisuja. Suurimmassa osassa julkaisuja tieteellisen\u00e4 kontribuutiona on menetelmien arviointi ja julkaisujen yleisin aihe terveydenhuollon n\u00e4k\u00f6kulmasta on data-analytiikan sovellettavuuden arviointi terveydenhuoltoon, mutta data-analytiikan tutkimuksen tietyn sairauden tai potilasryhm\u00e4n hoitoon n\u00e4hd\u00e4\u00e4n selv\u00e4sti lis\u00e4\u00e4ntyneen viime vuosina. Teknologisesta n\u00e4k\u00f6kulmasta suurin osa julkaisuista k\u00e4sittelee tietty\u00e4 teknologiaa tai teknologista n\u00e4k\u00f6kulmaa, ja teknologioista yleisimmin esiintyv\u00e4t koneoppiminen ja Apachen sovellukset. Tutkimusaineistossa yleisimm\u00e4t k\u00e4ytetyn tai tutkitun data-analytiikan k\u00e4ytt\u00f6tarkoitus ovat hoitomenetelmien kehitt\u00e4minen ja sairauksien ennustaminen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Big data and its utilization through analytics have become one of the most important areas of interest both in the scientific world and in various fields of business within recent decades. The amount of big data is increasing at an ever-increasing rate as the use of various technologies continues to increase. Big data is also a key concept in healthcare, where health data is accumulated both in the systems used in healthcare organizations and outside healthcare, for ex-ample through various wearable technologies. Utilizing health data through data analytics benefits healthcare in many ways, such as improving early identification and diagnosis of diseases, developing more individualized treatments, supporting the decision making of healthcare professionals, and developing management and resource optimization in healthcare organizations.\nThe purpose of this thesis is to examine the intersection of data analytics and healthcare in scientific literature and to map related scientific publications. The research problem is to examine when and in which scientific forums studies on the topic have been published and what topics are covered in studies. The research material is 176 scientific publications, which were sorted by the method of systematic mapping study. Mapping of the publications pointed clearly that data analytics in healthcare is very topical subject as the amount of the publications has clearly increased in last five years. Related scientific publications had been published very widely in various scientific forums, and both journal articles and conference proceedings are almost evenly distributed in the research material. In most publications, the scientific contribution is methodological evaluation, and the most common topic from a healthcare perspective is the evaluation of the applicability of data analytics to healthcare, but data analytics research for a particular disease or patient group has clearly in-creased in recent years. From a technological point of view, most publications deal with a specific technology or technological point of view, and of the technologies, machine learning and Apache applications are the most common. The most common purposes for data analytics used or examined are the development of treatment methods and the prediction of diseases.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-05-11T05:38:57Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-05-11T05:38:57Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "78", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "data-analytiikka", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "sairauksien ennustaminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hoitomenetelmien kehitt\u00e4minen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Data-analytiikka terveydenhuollossa : systemaattinen kirjallisuuskartoitus", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202105112708", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "analyysi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "terveydenhuolto", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "p\u00e4\u00e4t\u00f6ksenteko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|