_version_ |
1799744921719013376
|
annif_keywords_txtF_mv |
deep learning
machine learning
pole vaulters
motion
learning
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p39324
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p17014
http://www.yso.fi/onto/yso/p706
http://www.yso.fi/onto/yso/p2945
|
author |
Outinen, Pietari
|
author2 |
Liikuntatieteellinen tiedekunta
Faculty of Sport and Health Sciences
Liikunta- ja terveystieteet
Sport and Health Sciences
Jyväskylän yliopisto
University of Jyväskylä
Biomekaniikka
Biomechanics
5012
|
author_facet |
Outinen, Pietari
Liikuntatieteellinen tiedekunta
Faculty of Sport and Health Sciences
Liikunta- ja terveystieteet
Sport and Health Sciences
Jyväskylän yliopisto
University of Jyväskylä
Biomekaniikka
Biomechanics
5012
Outinen, Pietari
|
author_sort |
Outinen, Pietari
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Liikunta- ja terveystieteet
|
faculty_txtF |
Liikuntatieteellinen tiedekunta
|
first_indexed |
2021-05-10T20:03:21Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Maisterivaiheen työ
|
free_online_boolean |
1
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture</title><creator>Outinen, Pietari</creator><contributor type="tiedekunta" lang="fi">Liikuntatieteellinen tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Sport and Health Sciences</contributor><contributor type="laitos" lang="fi">Liikunta- ja terveystieteet</contributor><contributor type="laitos" lang="en">Sport and Health Sciences</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="oppiaine" lang="fi">Biomekaniikka</contributor><contributor type="oppiaine" lang="en">Biomechanics</contributor><contributor type="oppiainekoodi">5012</contributor><subject type="other">biomechanical analysis</subject><subject type="other">biomekaaninen analyysi</subject><subject type="other">markerless</subject><subject type="other">deep learning</subject><subject type="other">syväoppiminen</subject><subject type="yso">seiväshyppääjät</subject><subject type="yso">biomekaniikka</subject><subject type="yso">seiväshyppy</subject><subject type="yso">pole vaulters</subject><subject type="yso">biomechanics</subject><subject type="yso">pole vault</subject><available>2021-05-10T05:45:18Z</available><issued>2021</issued><type lang="en">Master’s thesis</type><type lang="fi">Pro gradu -tutkielma</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/75388</identifier><identifier type="urn">URN:NBN:fi:jyu-202105102682</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-202105102682</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/75388/1/URN%3aNBN%3afi%3ajyu-202105102682.pdf" name="URN:NBN:fi:jyu-202105102682.pdf" type="application/pdf" length="1908730" sequence="1"/><recordID>123456789_75388</recordID></qualifieddc>
|
id |
jyx.123456789_75388
|
language |
eng
|
last_indexed |
2024-05-13T20:04:56Z
|
main_date |
2021-01-01T00:00:00Z
|
main_date_str |
2021
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/75388\/1\/URN%3aNBN%3afi%3ajyu-202105102682.pdf","text":"URN:NBN:fi:jyu-202105102682.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
5012
|
publication_first_indexed |
2021-05-10T20:03:21Z
|
publishDate |
2021
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Outinen, Pietari
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
biomechanical analysis
biomekaaninen analyysi
markerless
deep learning
syväoppiminen
seiväshyppääjät
biomekaniikka
seiväshyppy
pole vaulters
biomechanics
pole vault
|
subject_txtF |
Biomekaniikka
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_75388&index=0&size=large
|
title |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_full |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_fullStr |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_full_unstemmed |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_short |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_sort |
determining the relationship between run up and take off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
title_txtP |
Determining the relationship between run-up and take-off characteristics and performance in top level pole vaulters using deep learning based markerless motion capture
|
topic |
biomechanical analysis
biomekaaninen analyysi
markerless
deep learning
syväoppiminen
seiväshyppääjät
biomekaniikka
seiväshyppy
pole vaulters
biomechanics
pole vault
|
topic_facet |
biomechanical analysis
biomechanics
biomekaaninen analyysi
biomekaniikka
deep learning
markerless
pole vault
pole vaulters
seiväshyppy
seiväshyppääjät
syväoppiminen
|
url |
https://jyx.jyu.fi/handle/123456789/75388
http://www.urn.fi/URN:NBN:fi:jyu-202105102682
|
work_keys_str_mv |
AT outinenpietari determiningtherelationshipbetweenrunupandtakeoffcharacteristicsandperformanceinto
|