The impact of fatigue on premotor brain activity

Fyysisessä väsymyksessä lihasten voimantuottokyky heikkenee. Esimotorinen aivojen aktivaatio on yhdistetty tiedostamattomiin liikkeen valmisteluun ja aloitukseen liittyviin toimintoihin. Valmiuspotentiaali on liikettä 1.5 sekuntia edeltävä negatiivinen jännitesiirtymä, jonka voimakkuus kuvaa kortika...

Full description

Bibliographic Details
Main Author: Leukkunen, Juha
Other Authors: Liikuntatieteellinen tiedekunta, Faculty of Sport and Health Sciences, Liikunta- ja terveystieteet, Sport and Health Sciences, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2021
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/75169
_version_ 1828193058136522752
author Leukkunen, Juha
author2 Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_facet Leukkunen, Juha Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä Leukkunen, Juha Liikuntatieteellinen tiedekunta Faculty of Sport and Health Sciences Liikunta- ja terveystieteet Sport and Health Sciences Jyväskylän yliopisto University of Jyväskylä
author_sort Leukkunen, Juha
datasource_str_mv jyx
description Fyysisessä väsymyksessä lihasten voimantuottokyky heikkenee. Esimotorinen aivojen aktivaatio on yhdistetty tiedostamattomiin liikkeen valmisteluun ja aloitukseen liittyviin toimintoihin. Valmiuspotentiaali on liikettä 1.5 sekuntia edeltävä negatiivinen jännitesiirtymä, jonka voimakkuus kuvaa kortikaalisen aktivaation suuruutta. Viimeaikaiset tutkimukset ovat osoittaneet ristiriitaisia tuloksia liittyen valmiuspotentiaalin muunteluun väsymyksessä. Osassa tutkimuksia valmiuspotentiaalin on osoitettu lisääntyvän ja osassa vähentyvän. Valmiuspotentiaalin on ehdotettu koostuvan sekä positiivisista että negatiivisista siirtymistä, ja että sen dynamiikka noudattaisi stokastista aaltoilevaa aktiivisuutta päätöksentekokynnyksen alapuolella. Positiivisten ja negatiivisten valmiuspotentiaalien voimakkuuden muuntelua ja niiden yhteyttä kortikospinaaliseen herkkyyteen ei ole aiemmin tutkittu väsymyksessä. 10 koehenkilöä osallistui ristikkäisasetelma-tutkimukseen, joka koostui kontrolli- ja väsytyskuormituksista. Molemmissa kuormituksissa suoritettiin 60 isometrista plantaarifleksiota jaettuna 30 suorituksen blokkeihin 1 ja 2. Valmiuspotentiaali mitattiin itsealoitetuista lihassupistuksista, joita toistettiin noin 20 sekunnin välein. Väsytyssupistuksissa (30 + 30) voimaa tuotettiin ensimmäinen neljä sekuntia 50 % maksimaalisesta isometrisesta lihassupistuksen (MVC) vääntömomentista, josta siirryttiin suoraan kolmen sekunnin maksimaaliseen supistukseen. Kontrollisupistuksissa (30 + 30) voimaa tuotettiin seitsemän sekuntia 10 % MVC vääntömomentista. Blokkien 1 ja 2 välissä pidettiin viiden minuutin tauko. Ennen blokkia 1 (PRE), blokkien 1 ja 2 välissä (POST1) ja blokin 2 jälkeen (POST2) mitattiin: 1) tahdonalaista aktivaatiota kortikaalisella transkraniaalisella magneettistimulaatiolla (TMS) sekä ääreishermon tasavirtastimulaatiolla, 2) kortikaalisen stimuluksen jälkeistä vaimentuneen lihasaktiivisuuden kestoa ja 3) kuormittuneisuuden tunnetta. Kortikospinaalista herkkyyttä mitattiin TMS:llä indusoitujen motoristen herätevasteiden rekrytointikäyränä ainoastaan PRE ja POST2. Väsytyksen aikana MVC vääntömomentti laski väleillä PRE 291 ± 41 Nm ja POST1 211 ± 37 Nm (p ≤0.01) sekä PRE ja POST2 200 ± 36 Nm (p≤0.01). Positiivisia valmiuspotentiaaleja (positiivisten ja negatiivisen valmiuspotentiaalien erotus) oli enemmän väsytyksessä (Block1 5.0 ± 12.9 ja Block2 2.0 ± 6.2) ja negatiivisia enemmän kontrollissa (Block1 -5.5 ± 6.2, p≤0.05 ja Block2 -6.0 ± 3.8, p≤0.01). Valmiuspotentiaalin voimakkuus lisääntyi 1.5 sekuntia ennen soleus-lihaksen lihasaktiivisuuden alkua. Väsytyksessä negatiivinen valmiuspotentiaali muuttui negatiivisemmaksi ja positiivinen positiivisemmaksi siirryttäessä kohti lihasaktiivisuuden alkua. Väsytyksessä positiivisen valmiuspotentiaalin myöhäisen komponentin RP2 pieneneminen blokkien 1 ja 2 välillä korreloi negatiivisesti (r=-0.97, p=0.0063, n=5) vääntömomentin vähenemisen kanssa välillä PRE ja POST2. Tahdonalaisen aktivaation taso kortikaalisella stimulaatiolla laski väsytyksen aikana välillä PRE 91 ± 5 % ja POST2 80 ± 14 % (p≤0.05), ja ääreishermon stimulaatiolla väleillä PRE 99 ± 2 % ja POST1 89 ± 5 % (p≤0.01) sekä PRE ja POST2 93 ± 5 % (p≤0.01). Vaimentunut lihasaktiivisuuden jakso kortikaalisen stimuluksen jälkeen lyheni väsytyksen aikana väleillä PRE 0.144 ± 0.011 s ja POST1 0.132 ± 0.012 s (p≤0.05) sekä PRE ja POST2 0.134 ± 0.011 s (p≤0.05). Kuormittuneisuuden tunne lisääntyi väsytyksen aikana väleillä PRE 1.2 ± 2.3 ja POST1 6.7 ± 2.2 (p≤0.01) sekä PRE ja POST2 8.4 ± 2.0 (p≤0.001). Rekrytointikäyrän voimakkuus vääntömomentin tasolla 20%MVC vääntömomentista lisääntyi yhtenevästi kontrollin ja väsytyksen aikana, mutta ei merkitsevästi. Tutkimuksen mukaan väsymystä aiheuttava intervallityyppinen maksimaalinen isometrinen plantaarifleksio- kuormitus muuntelee positiivisten ja negatiivisten valmiuspotentiaalien osuuksia yhdessä maksimaalisen vääntömomentin laskun kanssa, mikä indikoi ei-optimaalista vähentyneen herkkyyden tilaa motorisen aivokuoren hermosoluverkoissa liikkeen aloituksen aikana suurimmassa osassa lihassupistuksia. Ability to generate force decreases during performance fatigue. Premotor activity has been connected to unconscious processes related to movement preparation and ignition. Readiness potential (RP) is a cortical voltage drift preceding movement onset by 1.5-s and its negative amplitude is a marker of neural activity. Recent studies have shown conflicting results about RP amplitude both increasing and decreasing during fatigue. It has been suggested that RP consists of both positive and negative shifts, is based on a stochastic fluctuating activity under decision threshold, and is probabilistic in nature. Slope-dependent RP amplitude modulation during fatigue and how it is linked to corticospinal excitability (CSE) has not been previously studied. 10 volunteers participated in a crossover study fatiguing and control protocol of 60 isometric plantar flexions divided into blocks 1 and 2 of 30 contractions each. Contractions were self-started every ~20- s and RP was measured. Fatiguing contractions (30 + 30) started with 4-s at 50%MVC and ended in 3- s maximal contraction, while control contraction lasted 7-s at 10%MVC. There was a 5-min break be- tween blocks. Cortical and peripheral voluntary activation level (CVAL and PVAL, respectively), cortical silent period (SP), and rating of perceived exertion (RPE) was measured before Block1 (PRE) and between and after Block1 (POST1) and 2 (POST2). Recruitment curve was measured with transcranial magnetic stimulation (TMS) only at PRE and POST2. The fatiguing protocol resulted in a significant decrease in MVC torque from PRE (291±41Nm), to POST1 (211±37Nm) and POST2 (200±36Nm). There was a significantly larger occurrence of RPs with positive slope (measured as a difference in number of positively and negatively categorized RPs) during fatiguing contractions (Block1 5.0±12.9 and Block2 2.0±6.2) and significantly larger amount of negative RPs during control contractions (Block1 -5.5±6.2 and Block2 -6.0±3.8). RP amplitude showed a significant effect of time starting 1.5-s before electromyographic (EMG) activity of the soleus muscle (SOL). Negative RPs amplitude got more negative during control and positive RPs got more positive during fatigue closer to EMG onset. During fatigue a significant negative correlation (r=-0.97, p=0.0063, n=5) was found between decrease in positive RP2 amplitude from Block1 to Block2 and decrease in torque from PRE to POST2. During fatigue CVAL (PRE 91±5% to POST2 80±14%), PVAL (PRE 99±2% to POST1 89±5% and PRE to POST2 93±5%), cortical SP (PRE 0.144±0.011-s to POST1 0.132±0.012-s and PRE to POST2 0.134±0.011-s) were significantly reduced while RPE was significantly increased (PRE 1.2±2.3 to POST1 6.7±2.2 and PRE to POST2 8.4±2.0). Recruitment curve during 20%MVC showed a non-significant increasing trend in both conditions. In conclusion, fatiguing intermittent maximal isometric plantar flexion exercise modulated the distribution of slope-dependent RPs concomitant with a decrease in MVC torque, which indicates suboptimal decreased excitatory state of M1 cortex neural circuits during movement ignition in the higher proportion of the contractions.
first_indexed 2024-09-11T08:48:58Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Avela, Janne", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Leukkunen, Juha", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2021-04-23T06:05:53Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2021-04-23T06:05:53Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2021", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/75169", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Fyysisess\u00e4 v\u00e4symyksess\u00e4 lihasten voimantuottokyky heikkenee. Esimotorinen aivojen aktivaatio on yhdistetty tiedostamattomiin liikkeen valmisteluun ja aloitukseen liittyviin toimintoihin. Valmiuspotentiaali on liikett\u00e4 1.5 sekuntia edelt\u00e4v\u00e4 negatiivinen j\u00e4nnitesiirtym\u00e4, jonka voimakkuus kuvaa kortikaalisen aktivaation suuruutta. Viimeaikaiset tutkimukset ovat osoittaneet ristiriitaisia tuloksia liittyen valmiuspotentiaalin muunteluun v\u00e4symyksess\u00e4. Osassa tutkimuksia valmiuspotentiaalin on osoitettu lis\u00e4\u00e4ntyv\u00e4n ja osassa v\u00e4hentyv\u00e4n. Valmiuspotentiaalin on ehdotettu koostuvan sek\u00e4 positiivisista ett\u00e4 negatiivisista siirtymist\u00e4, ja ett\u00e4 sen dynamiikka noudattaisi stokastista aaltoilevaa aktiivisuutta p\u00e4\u00e4t\u00f6ksentekokynnyksen alapuolella. Positiivisten ja negatiivisten valmiuspotentiaalien voimakkuuden muuntelua ja niiden yhteytt\u00e4 kortikospinaaliseen herkkyyteen ei ole aiemmin tutkittu v\u00e4symyksess\u00e4.\n\n10 koehenkil\u00f6\u00e4 osallistui ristikk\u00e4isasetelma-tutkimukseen, joka koostui kontrolli- ja v\u00e4sytyskuormituksista. Molemmissa kuormituksissa suoritettiin 60 isometrista plantaarifleksiota jaettuna 30 suorituksen blokkeihin 1 ja 2. Valmiuspotentiaali mitattiin itsealoitetuista lihassupistuksista, joita toistettiin noin 20 sekunnin v\u00e4lein. V\u00e4sytyssupistuksissa (30 + 30) voimaa tuotettiin ensimm\u00e4inen nelj\u00e4 sekuntia 50 % maksimaalisesta isometrisesta lihassupistuksen (MVC) v\u00e4\u00e4nt\u00f6momentista, josta siirryttiin suoraan kolmen sekunnin maksimaaliseen supistukseen. Kontrollisupistuksissa (30 + 30) voimaa tuotettiin seitsem\u00e4n sekuntia 10 % MVC v\u00e4\u00e4nt\u00f6momentista. Blokkien 1 ja 2 v\u00e4liss\u00e4 pidettiin viiden minuutin tauko. Ennen blokkia 1 (PRE), blokkien 1 ja 2 v\u00e4liss\u00e4 (POST1) ja blokin 2 j\u00e4lkeen (POST2) mitattiin: 1) tahdonalaista aktivaatiota kortikaalisella transkraniaalisella magneettistimulaatiolla (TMS) sek\u00e4 \u00e4\u00e4reishermon tasavirtastimulaatiolla, 2) kortikaalisen stimuluksen j\u00e4lkeist\u00e4 vaimentuneen lihasaktiivisuuden kestoa ja 3) kuormittuneisuuden tunnetta. Kortikospinaalista herkkyytt\u00e4 mitattiin TMS:ll\u00e4 indusoitujen motoristen her\u00e4tevasteiden rekrytointik\u00e4yr\u00e4n\u00e4 ainoastaan PRE ja POST2.\n\nV\u00e4sytyksen aikana MVC v\u00e4\u00e4nt\u00f6momentti laski v\u00e4leill\u00e4 PRE 291 \u00b1 41 Nm ja POST1 211 \u00b1 37 Nm (p \u22640.01) sek\u00e4 PRE ja POST2 200 \u00b1 36 Nm (p\u22640.01). Positiivisia valmiuspotentiaaleja (positiivisten ja negatiivisen valmiuspotentiaalien erotus) oli enemm\u00e4n v\u00e4sytyksess\u00e4 (Block1 5.0 \u00b1 12.9 ja Block2 2.0 \u00b1 6.2) ja negatiivisia enemm\u00e4n kontrollissa (Block1 -5.5 \u00b1 6.2, p\u22640.05 ja Block2 -6.0 \u00b1 3.8, p\u22640.01). Valmiuspotentiaalin voimakkuus lis\u00e4\u00e4ntyi 1.5 sekuntia ennen soleus-lihaksen lihasaktiivisuuden alkua. V\u00e4sytyksess\u00e4 negatiivinen valmiuspotentiaali muuttui negatiivisemmaksi ja positiivinen positiivisemmaksi siirrytt\u00e4ess\u00e4 kohti lihasaktiivisuuden alkua. V\u00e4sytyksess\u00e4 positiivisen valmiuspotentiaalin my\u00f6h\u00e4isen komponentin RP2 pieneneminen blokkien 1 ja 2 v\u00e4lill\u00e4 korreloi negatiivisesti (r=-0.97, p=0.0063, n=5) v\u00e4\u00e4nt\u00f6momentin v\u00e4henemisen kanssa v\u00e4lill\u00e4 PRE ja POST2.\n\nTahdonalaisen aktivaation taso kortikaalisella stimulaatiolla laski v\u00e4sytyksen aikana v\u00e4lill\u00e4 PRE 91 \u00b1 5 % ja POST2 80 \u00b1 14 % (p\u22640.05), ja \u00e4\u00e4reishermon stimulaatiolla v\u00e4leill\u00e4 PRE 99 \u00b1 2 % ja POST1 89 \u00b1 5 % (p\u22640.01) sek\u00e4 PRE ja POST2 93 \u00b1 5 % (p\u22640.01). Vaimentunut lihasaktiivisuuden jakso kortikaalisen stimuluksen j\u00e4lkeen lyheni v\u00e4sytyksen aikana v\u00e4leill\u00e4 PRE 0.144 \u00b1 0.011 s ja POST1 0.132 \u00b1 0.012 s (p\u22640.05) sek\u00e4 PRE ja POST2 0.134 \u00b1 0.011 s (p\u22640.05). Kuormittuneisuuden tunne lis\u00e4\u00e4ntyi v\u00e4sytyksen aikana v\u00e4leill\u00e4 PRE 1.2 \u00b1 2.3 ja POST1 6.7 \u00b1 2.2 (p\u22640.01) sek\u00e4 PRE ja POST2 8.4 \u00b1 2.0 (p\u22640.001). Rekrytointik\u00e4yr\u00e4n voimakkuus v\u00e4\u00e4nt\u00f6momentin tasolla 20%MVC v\u00e4\u00e4nt\u00f6momentista lis\u00e4\u00e4ntyi yhtenev\u00e4sti kontrollin ja v\u00e4sytyksen aikana, mutta ei merkitsev\u00e4sti.\n\nTutkimuksen mukaan v\u00e4symyst\u00e4 aiheuttava intervallityyppinen maksimaalinen isometrinen plantaarifleksio- kuormitus muuntelee positiivisten ja negatiivisten valmiuspotentiaalien osuuksia yhdess\u00e4 maksimaalisen v\u00e4\u00e4nt\u00f6momentin laskun kanssa, mik\u00e4 indikoi ei-optimaalista v\u00e4hentyneen herkkyyden tilaa motorisen aivokuoren hermosoluverkoissa liikkeen aloituksen aikana suurimmassa osassa lihassupistuksia.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Ability to generate force decreases during performance fatigue. Premotor activity has been connected to unconscious processes related to movement preparation and ignition. Readiness potential (RP) is a cortical voltage drift preceding movement onset by 1.5-s and its negative amplitude is a marker of neural activity. Recent studies have shown conflicting results about RP amplitude both increasing and decreasing during fatigue. It has been suggested that RP consists of both positive and negative shifts, is based on a stochastic fluctuating activity under decision threshold, and is probabilistic in nature. Slope-dependent RP amplitude modulation during fatigue and how it is linked to corticospinal excitability (CSE) has not been previously studied.\n\n10 volunteers participated in a crossover study fatiguing and control protocol of 60 isometric plantar flexions divided into blocks 1 and 2 of 30 contractions each. Contractions were self-started every ~20- s and RP was measured. Fatiguing contractions (30 + 30) started with 4-s at 50%MVC and ended in 3- s maximal contraction, while control contraction lasted 7-s at 10%MVC. There was a 5-min break be- tween blocks. Cortical and peripheral voluntary activation level (CVAL and PVAL, respectively), cortical silent period (SP), and rating of perceived exertion (RPE) was measured before Block1 (PRE) and between and after Block1 (POST1) and 2 (POST2). Recruitment curve was measured with transcranial magnetic stimulation (TMS) only at PRE and POST2.\n\nThe fatiguing protocol resulted in a significant decrease in MVC torque from PRE (291\u00b141Nm), to POST1 (211\u00b137Nm) and POST2 (200\u00b136Nm). There was a significantly larger occurrence of RPs with positive slope (measured as a difference in number of positively and negatively categorized RPs) during fatiguing contractions (Block1 5.0\u00b112.9 and Block2 2.0\u00b16.2) and significantly larger amount of negative RPs during control contractions (Block1 -5.5\u00b16.2 and Block2 -6.0\u00b13.8). RP amplitude showed a significant effect of time starting 1.5-s before electromyographic (EMG) activity of the soleus muscle (SOL). Negative RPs amplitude got more negative during control and positive RPs got more positive during fatigue closer to EMG onset. During fatigue a significant negative correlation (r=-0.97, p=0.0063, n=5) was found between decrease in positive RP2 amplitude from Block1 to Block2 and decrease in torque from PRE to POST2.\n\nDuring fatigue CVAL (PRE 91\u00b15% to POST2 80\u00b114%), PVAL (PRE 99\u00b12% to POST1 89\u00b15% and PRE to POST2 93\u00b15%), cortical SP (PRE 0.144\u00b10.011-s to POST1 0.132\u00b10.012-s and PRE to POST2 0.134\u00b10.011-s) were significantly reduced while RPE was significantly increased (PRE 1.2\u00b12.3 to POST1 6.7\u00b12.2 and PRE to POST2 8.4\u00b12.0). Recruitment curve during 20%MVC showed a non-significant increasing trend in both conditions.\n\nIn conclusion, fatiguing intermittent maximal isometric plantar flexion exercise modulated the distribution of slope-dependent RPs concomitant with a decrease in MVC torque, which indicates suboptimal decreased excitatory state of M1 cortex neural circuits during movement ignition in the higher proportion of the contractions.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2021-04-23T06:05:53Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2021-04-23T06:05:53Z (GMT). No. of bitstreams: 0\n Previous issue date: 2021", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "81", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Bereitschaftspotential", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "cortical silent period", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "corticospinal excitability", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "maximal voluntary contraction", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "motor control", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "peripheral nerve stimulation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "premotor activity", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "readiness potential", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "recruitment curve", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "voluntary activation level", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "The impact of fatigue on premotor brain activity", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202104232466", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Liikuntatieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Liikunta- ja terveystieteet", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Sport and Health Sciences", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Biomekaniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Biomechanics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "5012", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "v\u00e4symys", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "EEG", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "aivot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "elektromyografia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "hermosto", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fatigue (biological phenomena)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "EEG", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "brain", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "electromyography", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nervous system", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_75169
language eng
last_indexed 2025-03-31T20:02:49Z
main_date 2021-01-01T00:00:00Z
main_date_str 2021
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/3f5162d0-fa32-4a11-bb37-5e8d06afff8f\/download","text":"URN:NBN:fi:jyu-202104232466.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2021
record_format qdc
source_str_mv jyx
spellingShingle Leukkunen, Juha The impact of fatigue on premotor brain activity Bereitschaftspotential cortical silent period corticospinal excitability maximal voluntary contraction motor control peripheral nerve stimulation premotor activity readiness potential recruitment curve voluntary activation level Biomekaniikka Biomechanics 5012 väsymys EEG aivot elektromyografia hermosto fatigue (biological phenomena) brain electromyography nervous system
title The impact of fatigue on premotor brain activity
title_full The impact of fatigue on premotor brain activity
title_fullStr The impact of fatigue on premotor brain activity The impact of fatigue on premotor brain activity
title_full_unstemmed The impact of fatigue on premotor brain activity The impact of fatigue on premotor brain activity
title_short The impact of fatigue on premotor brain activity
title_sort impact of fatigue on premotor brain activity
title_txtP The impact of fatigue on premotor brain activity
topic Bereitschaftspotential cortical silent period corticospinal excitability maximal voluntary contraction motor control peripheral nerve stimulation premotor activity readiness potential recruitment curve voluntary activation level Biomekaniikka Biomechanics 5012 väsymys EEG aivot elektromyografia hermosto fatigue (biological phenomena) brain electromyography nervous system
topic_facet 5012 Bereitschaftspotential Biomechanics Biomekaniikka EEG aivot brain cortical silent period corticospinal excitability electromyography elektromyografia fatigue (biological phenomena) hermosto maximal voluntary contraction motor control nervous system peripheral nerve stimulation premotor activity readiness potential recruitment curve voluntary activation level väsymys
url https://jyx.jyu.fi/handle/123456789/75169 http://www.urn.fi/URN:NBN:fi:jyu-202104232466
work_keys_str_mv AT leukkunenjuha impactoffatigueonpremotorbrainactivity AT leukkunenjuha theimpactoffatigueonpremotorbrainactivity