Applications of images anomalies detection using deep learning in department store

Deep learning is a branch of machine learning which itself is a branch of Artificial Intelligence. The use of deep learning to solve domain specific problems is on the rise. Deep learning has been successfully used to assist sales prediction in retail, disease detection in medicine, road infrastruct...

Full description

Bibliographic Details
Main Author: Banstola, Ram
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/73111
_version_ 1828193077271986176
author Banstola, Ram
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Banstola, Ram Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Banstola, Ram Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Banstola, Ram
datasource_str_mv jyx
description Deep learning is a branch of machine learning which itself is a branch of Artificial Intelligence. The use of deep learning to solve domain specific problems is on the rise. Deep learning has been successfully used to assist sales prediction in retail, disease detection in medicine, road infrastructure monitoring by checking cracks on the road, accidents prone zones, detect anomalous activities in the realm of cyber security etc. At present, user and machine generated data is available abundantly and the challenges for enterprises is to infer new information from the available data to increase profit for the enterprise, produce a reliable system and increase customer satisfaction. Deep learning has been successfully used in classification of data with high precision. However, there are bottlenecks when it comes to anomalies in data because building models to detect anomalies is more difficult than classification problems. This thesis aims to study image anomalies detection and their applications department store using design science research methods. This thesis presents a basic prototype application to demonstrate anomalies in product areas in department stores.
first_indexed 2020-12-11T21:01:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Khriyenko, Oleksiy", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Banstola, Ram", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-12-11T07:22:03Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-12-11T07:22:03Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/73111", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Deep learning is a branch of machine learning which itself is a branch of Artificial Intelligence. The use of deep learning to solve domain specific problems is on the rise. Deep learning has been successfully used to assist sales prediction in retail, disease detection in medicine, road infrastructure monitoring by checking cracks on the road, accidents prone zones, detect anomalous activities in the realm of cyber security etc. At present, user and machine generated data is available abundantly and the challenges for enterprises is to infer new information from the available data to increase profit for the enterprise, produce a reliable system and increase customer satisfaction. Deep learning has been successfully used in classification of data with high precision. However, there are bottlenecks when it comes to anomalies in data because building models to detect anomalies is more difficult than classification problems. This thesis aims to study image anomalies detection and their applications department store using design science research methods. This thesis presents a basic prototype application to demonstrate anomalies in product areas in department stores.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-12-11T07:22:03Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-12-11T07:22:03Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "80", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "deep learning", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "anomaly detection", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "autoencoder", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "retail robot", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Applications of images anomalies detection using deep learning in department store", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202012117057", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "konen\u00e4k\u00f6", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "anomaliat", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "computer vision", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "anomalies", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_73111
language eng
last_indexed 2025-03-31T20:01:22Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/c072b4cf-189c-49f4-9361-399d65f76e29\/download","text":"URN:NBN:fi:jyu-202012117057.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Banstola, Ram Applications of images anomalies detection using deep learning in department store deep learning anomaly detection autoencoder retail robot Tietotekniikka Mathematical Information Technology 602 konenäkö koneoppiminen tekoäly anomaliat computer vision machine learning artificial intelligence anomalies
title Applications of images anomalies detection using deep learning in department store
title_full Applications of images anomalies detection using deep learning in department store
title_fullStr Applications of images anomalies detection using deep learning in department store Applications of images anomalies detection using deep learning in department store
title_full_unstemmed Applications of images anomalies detection using deep learning in department store Applications of images anomalies detection using deep learning in department store
title_short Applications of images anomalies detection using deep learning in department store
title_sort applications of images anomalies detection using deep learning in department store
title_txtP Applications of images anomalies detection using deep learning in department store
topic deep learning anomaly detection autoencoder retail robot Tietotekniikka Mathematical Information Technology 602 konenäkö koneoppiminen tekoäly anomaliat computer vision machine learning artificial intelligence anomalies
topic_facet 602 Mathematical Information Technology Tietotekniikka anomaliat anomalies anomaly detection artificial intelligence autoencoder computer vision deep learning konenäkö koneoppiminen machine learning retail robot tekoäly
url https://jyx.jyu.fi/handle/123456789/73111 http://www.urn.fi/URN:NBN:fi:jyu-202012117057
work_keys_str_mv AT banstolaram applicationsofimagesanomaliesdetectionusingdeeplearningindepartmentstore