Deep semantic segmentation for skin cancer detection from hyperspectral images

As skin cancer types are a growing concern worldwide, a new screening tool combined with automation may help the clinicians in clinical examinations of lesions. A novel hyperspectral imager prototype has been noted to be a promising non-invasive tool in screening of lesions. Deep learning, especiall...

Full description

Bibliographic Details
Main Author: Karhu, Anette
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/73001
_version_ 1826225755954085888
author Karhu, Anette
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Karhu, Anette Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Karhu, Anette Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Karhu, Anette
datasource_str_mv jyx
description As skin cancer types are a growing concern worldwide, a new screening tool combined with automation may help the clinicians in clinical examinations of lesions. A novel hyperspectral imager prototype has been noted to be a promising non-invasive tool in screening of lesions. Deep learning, especially semantic segmentation models, have brought successful results in other biomedical imaging tasks. Therefore, semantic segmentation could be used to automate the results from the hyperspectral images of lesions. In this thesis we used a novel hyperspectral image dataset of lesions that contained 61 images. The dataset contained 120 different wavebands from the spectral range of 450 − 850 nm with dimensions of 1920×1200 pixels. We implemented two different semantic segmentation models and compared their performance with the novel hyperspectral image data. The models were compared by their ability to segmentate the images and by their ability to classify lesion types from the images. From the implemented models, the combination of ResNet and Unet model architecture (ResNet-Unet) was able to segmentate the images more accurately with f1-score of 92.38 %, whereas the implemented Unet model gained f1-score of 92.17 %. In addition, the ResNet-Unet model classified the lesion types more accurately, and contained only one false negative result in melanoma classification, when the Unet model contained two false negatives in melanoma classification. This study was able to repeat the results of a previous study, where the segmentation model using hyperspectral image data was able to classify melanoma slightly more accurately than the clinicians in a previous study were.
first_indexed 2024-09-11T08:49:38Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "P\u00f6l\u00f6nen, Ilkka", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Karhu, Anette", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-12-07T13:29:11Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-12-07T13:29:11Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/73001", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "As skin cancer types are a growing concern worldwide, a new screening tool combined with automation may help the clinicians in clinical examinations of lesions. A novel hyperspectral imager prototype has been noted to be a promising non-invasive tool in screening of lesions. Deep learning, especially semantic segmentation models, have brought successful results in other biomedical imaging tasks. Therefore, semantic segmentation could be used to automate the results from the hyperspectral images of lesions. In this thesis we used a novel hyperspectral image dataset of lesions that contained 61 images. The dataset contained 120 different wavebands from the spectral range of 450 \u2212 850 nm with dimensions of 1920\u00d71200 pixels. We implemented two different semantic segmentation models and compared their performance with the novel hyperspectral image data. The models were compared by their ability to segmentate the images and by their ability to classify lesion types from the images. From the implemented models, the combination of ResNet and Unet model architecture (ResNet-Unet) was able to segmentate the images more accurately with f1-score of 92.38 %, whereas the implemented Unet model gained f1-score of 92.17 %. In addition, the ResNet-Unet model classified the lesion types more accurately, and contained only one false negative result in melanoma classification, when the Unet model contained\ntwo false negatives in melanoma classification. This study was able to repeat the results of a previous study, where the segmentation model using hyperspectral image data was able to classify melanoma slightly more accurately than the clinicians in a previous study were.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-12-07T13:29:11Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-12-07T13:29:11Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "85", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "biomedical image segmentation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "deep learning", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hyperspectral imaging", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Deep semantic segmentation for skin cancer detection from hyperspectral images", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202012076948", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "melanooma", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kuvantaminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ihosy\u00f6p\u00e4", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "segmentointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sy\u00f6p\u00e4taudit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "3D-mallinnus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "melanoma", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "imaging", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "skin cancer", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "segmentation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cancerous diseases", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Three-dimensional imaging", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_73001
language eng
last_indexed 2025-02-18T10:56:19Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/d296d480-d925-4f21-a0a1-08895f1fc27c\/download","text":"URN:NBN:fi:jyu-202012076948.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Karhu, Anette Deep semantic segmentation for skin cancer detection from hyperspectral images biomedical image segmentation deep learning hyperspectral imaging Tietotekniikka Mathematical Information Technology 602 melanooma kuvantaminen ihosyöpä segmentointi syöpätaudit koneoppiminen 3D-mallinnus melanoma imaging skin cancer segmentation cancerous diseases machine learning Three-dimensional imaging
title Deep semantic segmentation for skin cancer detection from hyperspectral images
title_full Deep semantic segmentation for skin cancer detection from hyperspectral images
title_fullStr Deep semantic segmentation for skin cancer detection from hyperspectral images Deep semantic segmentation for skin cancer detection from hyperspectral images
title_full_unstemmed Deep semantic segmentation for skin cancer detection from hyperspectral images Deep semantic segmentation for skin cancer detection from hyperspectral images
title_short Deep semantic segmentation for skin cancer detection from hyperspectral images
title_sort deep semantic segmentation for skin cancer detection from hyperspectral images
title_txtP Deep semantic segmentation for skin cancer detection from hyperspectral images
topic biomedical image segmentation deep learning hyperspectral imaging Tietotekniikka Mathematical Information Technology 602 melanooma kuvantaminen ihosyöpä segmentointi syöpätaudit koneoppiminen 3D-mallinnus melanoma imaging skin cancer segmentation cancerous diseases machine learning Three-dimensional imaging
topic_facet 3D-mallinnus 602 Mathematical Information Technology Three-dimensional imaging Tietotekniikka biomedical image segmentation cancerous diseases deep learning hyperspectral imaging ihosyöpä imaging koneoppiminen kuvantaminen machine learning melanoma melanooma segmentation segmentointi skin cancer syöpätaudit
url https://jyx.jyu.fi/handle/123456789/73001 http://www.urn.fi/URN:NBN:fi:jyu-202012076948
work_keys_str_mv AT karhuanette deepsemanticsegmentationforskincancerdetectionfromhyperspectralimages