Advanced optimization algorithms for applications in control engineering

In the last ten years optimization in industrial applications has obtained an increasing attention. In particular it has been demonstrated useful and effective in the solution of control problems. The implementation of an optimization algorithm on a real-time control platform must cope with the lack...

Full description

Bibliographic Details
Main Author: Mininno, Ernesto
Other Authors: University of Jyväskylä, Jyväskylän yliopisto
Format: Doctoral dissertation
Language:eng
Published: 2011
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/71991
_version_ 1826225504242368512
author Mininno, Ernesto
author2 University of Jyväskylä Jyväskylän yliopisto
author_facet Mininno, Ernesto University of Jyväskylä Jyväskylän yliopisto Mininno, Ernesto University of Jyväskylä Jyväskylän yliopisto
author_sort Mininno, Ernesto
datasource_str_mv jyx
description In the last ten years optimization in industrial applications has obtained an increasing attention. In particular it has been demonstrated useful and effective in the solution of control problems. The implementation of an optimization algorithm on a real-time control platform must cope with the lack of a full power computer, thus it must use a very low amount of memory and computational power. On the other hand the presence of nonlinearities, sensors and approximations injects in the signals of the control loop some noise, resulting in a noisy fitness function to be optimized. In this work both issues are addressed in order to show how a novel algorithmic design can arise from the solution of these implementation problems, often underestimated in the theoretical approach. This thesis proposes a set of novel algorithmic solutions for facing complex real-world problems in control engineering. Two algorithms addressing the optimization in the presence of noise are discussed. In addition, a novel adaptation system inspired by estimation of distribution paradigm is proposed to handle highly multimodal fitness landscapes. A crucially important contribution contained in this thesis is the definition of compact Differential Evolution for optimization problems in presence of limited hardware. Finally an evolution of the latter algorithm in the fashion of Memetic Computing is proposed with reference to an industrial application problem.
first_indexed 2020-10-02T20:01:41Z
format Väitöskirja
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Mininno, Ernesto", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-10-02T10:47:44Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-10-02T10:47:44Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2011", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.isbn", "value": "978-951-39-4540-4", "language": null, "element": "identifier", "qualifier": "isbn", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71991", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In the last ten years optimization in industrial applications has obtained an increasing attention. In particular it has been demonstrated useful and effective in the solution of control problems. The implementation of an optimization algorithm on a real-time control platform must cope with the lack of a full power computer, thus it must use a very low amount of memory and computational power. On the other hand the presence of nonlinearities, sensors and approximations injects in the signals of the control loop some noise, resulting in a noisy fitness function to be optimized. In this work both issues are addressed in order to show how a novel algorithmic design can arise from the solution of these implementation problems, often underestimated in the theoretical approach. This thesis proposes a set of novel algorithmic solutions for facing complex real-world problems in control engineering. Two algorithms addressing the optimization in the presence of noise are discussed. In addition, a novel adaptation system inspired by estimation of distribution paradigm is proposed to handle highly multimodal fitness landscapes. A crucially important contribution contained in this thesis is the definition of compact Differential Evolution for optimization problems in presence of limited hardware. Finally an evolution of the latter algorithm in the fashion of Memetic Computing is proposed with reference to an industrial application problem.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Harri Hirvi (hirvi@jyu.fi) on 2020-10-02T10:47:44Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-10-02T10:47:44Z (GMT). No. of bitstreams: 0\n Previous issue date: 2011", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.relation.ispartofseries", "value": "Jyv\u00e4skyl\u00e4 studies in computing", "language": null, "element": "relation", "qualifier": "ispartofseries", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli I:</b> Mininno, E., Neri, F., Cupertino, F., & Naso, D. (2011). Compact differential evolution. <i>IEEE Transactions on Evolutionary Computation, 15(1), 32-54.</i> DOI: <a href=\"https://doi.org/10.1109/TEVC.2010.2058120\"target=\"_blank\">10.1109/TEVC.2010.2058120</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli II:</b> Neri, F., & Mininno, E. (2010). Memetic Compact Differential Evolution for Cartesian Robot Control. <i>IEEE Computational Intelligence Magazine, 5(2), 54-65.</i> DOI: <a href=\"https://doi.org/10.1109/MCI.2010.936305\"target=\"_blank\">10.1109/MCI.2010.936305</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli III:</b> Mininno, E., & Neri, F. (2010). Estimation Distribution Differential Evolution. In <i>C. D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ek\u00e1rt, A. I. Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, F. Neri, & M. Preu\u00df (Eds.), Applications of Evolutionary Computation (pp. 522-531). Springer. Lecture Notes in Computer Science, 6024.</i> DOI: <a href=\"https://doi.org/10.1007/978-3-642-12239-2_54\"target=\"_blank\">10.1007/978-3-642-12239-2_54</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli IV:</b> Mininno, E., & Neri, F. (2010). Memetic Differential Evolution Approach in Noisy Optimization. <i>Memetic Computing Journal, 2(2), 111-135.</i> DOI: <a href=\"https://doi.org/10.1007/s12293-009-0029-4\"target=\"_blank\">10.1007/s12293-009-0029-4</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.relation.haspart", "value": "<b>Artikkeli V:</b> Neri, F., Mininno, E., & K\u00e4rkk\u00e4inen, T. (2010). Noise Analysis Compact Genetic Algorithm. In <i>C. D. Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ek\u00e1rt, A. I. Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, F. Neri, & M. Preu\u00df (Eds.), Applications of Evolutionary Computation (pp. 602-611). Springer. Lecture Notes in Computer Science, 6024.</i> DOI: <a href=\"https://doi.org/10.1007/978-3-642-12239-2_62\"target=\"_blank\">10.1007/978-3-642-12239-2_62</a>", "language": "", "element": "relation", "qualifier": "haspart", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": null, "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "algoritmit", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "matemaattinen optimointi", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "optimointi", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "reaaliaikaisuus", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "sulautettu tietotekniikka", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "teko\u00e4ly", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "tiet\u00e4mystekniikka", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "differentiaalievoluutio", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "evoluutiolaskenta", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "Algorithms.", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "Evolutionary computation.", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "compact algorithm", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "differential evolution", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "evolutionary algorithm", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "evoluutioalgoritmit", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "laskennallinen \u00e4lykkyys", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "memetic algorithm", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "memetic computing", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "noise analysis", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "optimointimenetelm\u00e4t", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "real time control systems", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.subject", "value": "robotic control", "language": "", "element": "subject", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Advanced optimization algorithms for applications in control engineering", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "doctoral thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:ISBN:978-951-39-4540-4", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_db06", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "doctoralThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.date.digitised", "value": "2020", "language": null, "element": "date", "qualifier": "digitised", "schema": "dc"}]
id jyx.123456789_71991
language eng
last_indexed 2025-02-18T10:54:58Z
main_date 2011-01-01T00:00:00Z
main_date_str 2011
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/7d4fa3a2-64ee-48f9-aefc-196eb6d42b7b\/download","text":"Mininno_Ernesto_screen.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2011
record_format qdc
source_str_mv jyx
spellingShingle Mininno, Ernesto Advanced optimization algorithms for applications in control engineering algoritmit matemaattinen optimointi optimointi reaaliaikaisuus sulautettu tietotekniikka tekoäly tietämystekniikka differentiaalievoluutio evoluutiolaskenta Algorithms. Evolutionary computation. compact algorithm differential evolution evolutionary algorithm evoluutioalgoritmit laskennallinen älykkyys memetic algorithm memetic computing noise analysis optimointimenetelmät real time control systems robotic control
title Advanced optimization algorithms for applications in control engineering
title_full Advanced optimization algorithms for applications in control engineering
title_fullStr Advanced optimization algorithms for applications in control engineering Advanced optimization algorithms for applications in control engineering
title_full_unstemmed Advanced optimization algorithms for applications in control engineering Advanced optimization algorithms for applications in control engineering
title_short Advanced optimization algorithms for applications in control engineering
title_sort advanced optimization algorithms for applications in control engineering
title_txtP Advanced optimization algorithms for applications in control engineering
topic algoritmit matemaattinen optimointi optimointi reaaliaikaisuus sulautettu tietotekniikka tekoäly tietämystekniikka differentiaalievoluutio evoluutiolaskenta Algorithms. Evolutionary computation. compact algorithm differential evolution evolutionary algorithm evoluutioalgoritmit laskennallinen älykkyys memetic algorithm memetic computing noise analysis optimointimenetelmät real time control systems robotic control
topic_facet Algorithms. Evolutionary computation. algoritmit compact algorithm differentiaalievoluutio differential evolution evolutionary algorithm evoluutioalgoritmit evoluutiolaskenta laskennallinen älykkyys matemaattinen optimointi memetic algorithm memetic computing noise analysis optimointi optimointimenetelmät reaaliaikaisuus real time control systems robotic control sulautettu tietotekniikka tekoäly tietämystekniikka
url https://jyx.jyu.fi/handle/123456789/71991 http://www.urn.fi/URN:ISBN:978-951-39-4540-4
work_keys_str_mv AT mininnoernesto advancedoptimizationalgorithmsforapplicationsincontrolengineering