Graphene plasmonics for surface-enhanced infrared spectroscopy

The work, presented in this thesis, focuses on studying graphene as a signal enhancing material for spectroscopic applications. Among many outstanding characteristics of graphene, it also exhibits attractive plasmonic properties. Tunability of the resonance within THz to Mid-IR range and high field...

Full description

Bibliographic Details
Main Author: Plyushch, Alexander
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/71392
_version_ 1826225759544410112
author Plyushch, Alexander
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Plyushch, Alexander Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Plyushch, Alexander Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Plyushch, Alexander
datasource_str_mv jyx
description The work, presented in this thesis, focuses on studying graphene as a signal enhancing material for spectroscopic applications. Among many outstanding characteristics of graphene, it also exhibits attractive plasmonic properties. Tunability of the resonance within THz to Mid-IR range and high field confinement factor makes it a great candidate for the surface enhanced infrared spectroscopy application. This thesis presents the results of computational and experimental investigation of graphene-based optical resonators. The numerical study was focused on the optimization of two-dimensional graphene geometries, looking to achieve the highest enhancement factor. The experimental part of the work included the fabrication process optimization and characterization of produced graphene structures. Numerical simulations of plasmonic resonance of structured graphene at far infrared range was performed using Finite-Difference Time-Domain method. Simulated results demonstrated the possibility to achieve the enhancement factor of approximately 10^5 for near-field coupled structures spaced as close as 10 nm. Two-dimensional periodicity of studied geometries demonstrated switchable resonance modes, accessible via polarization of the incident light. Numerical studies also revealed a substantial degradation of the enhancement factor related to the quality of graphene. The experimental work consisted of the optimization of graphene patterning process, fabrication of the active plasmonic device and its characterization using FTIR microscopy and scanning probe imaging. A novel approach for graphene patterning was utilized. Substituting the conventional lithography, focused ion beam was used to selectively remove graphene, producing high-resolution patterns. Surface profile imaging of milled structures demonstrated an excellent performance and accuracy for 30 keV neon beam. FTIR measurements did not produce the reliable results. Observed spectral variations are not certain to be caused by plasmonic excitations. The uncertainty of infrared absorption measurements may be linked to the overall design of the device and the fabrication method chosen. Further discussion is given in the thesis.
first_indexed 2020-08-14T20:00:30Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Toppari, Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Johansson, Andreas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Plyushch, Alexander", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-08-14T06:08:23Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-08-14T06:08:23Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71392", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The work, presented in this thesis, focuses on studying graphene as a signal enhancing material for spectroscopic applications. Among many outstanding characteristics of graphene, it also exhibits attractive plasmonic properties. Tunability of the resonance within THz to Mid-IR range and high field confinement factor makes it a great candidate for the surface enhanced infrared spectroscopy application.\nThis thesis presents the results of computational and experimental investigation of graphene-based optical resonators. The numerical study was focused on the optimization of two-dimensional graphene geometries, looking to achieve the highest enhancement factor. The experimental part of the work included the fabrication process optimization and characterization of produced graphene structures.\n\nNumerical simulations of plasmonic resonance of structured graphene at far infrared range was performed using Finite-Difference Time-Domain method. Simulated results demonstrated the possibility to achieve the enhancement factor of approximately 10^5 for near-field coupled structures spaced as close as 10 nm. Two-dimensional periodicity of studied geometries demonstrated switchable resonance modes, accessible via polarization of the incident light. Numerical studies also revealed a substantial degradation of the enhancement factor related to the quality of graphene.\n\nThe experimental work consisted of the optimization of graphene patterning process, fabrication of the active plasmonic device and its characterization using FTIR microscopy and scanning probe imaging. A novel approach for graphene patterning was utilized. Substituting the conventional lithography, focused ion beam was used to selectively remove graphene, producing high-resolution patterns. Surface profile imaging of milled structures demonstrated an excellent performance and accuracy for 30 keV neon beam. FTIR measurements did not produce the reliable results. Observed spectral variations are not certain to be caused by plasmonic excitations. The uncertainty of infrared absorption measurements may be linked to the overall design of the device and the fabrication method chosen. Further discussion is given in the thesis.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-08-14T06:08:23Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-08-14T06:08:23Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "77", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "FTIR", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "plasmonics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "sensing", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Graphene plasmonics for surface-enhanced infrared spectroscopy", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202008145530", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Soveltava fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Applied Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4023", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeeni", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanorakenteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spektroskopia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fokusoidut ionisuihkut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "graphene", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanostructures", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spectroscopy", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "focused ion beams", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_71392
language eng
last_indexed 2025-02-18T10:55:49Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/5b5d41c7-a731-4197-962f-4aaaaee3cbbc\/download","text":"URN:NBN:fi:jyu-202008145530.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Plyushch, Alexander Graphene plasmonics for surface-enhanced infrared spectroscopy FTIR plasmonics sensing Soveltava fysiikka Applied Physics 4023 grafeeni nanorakenteet spektroskopia fokusoidut ionisuihkut graphene nanostructures spectroscopy focused ion beams
title Graphene plasmonics for surface-enhanced infrared spectroscopy
title_full Graphene plasmonics for surface-enhanced infrared spectroscopy
title_fullStr Graphene plasmonics for surface-enhanced infrared spectroscopy Graphene plasmonics for surface-enhanced infrared spectroscopy
title_full_unstemmed Graphene plasmonics for surface-enhanced infrared spectroscopy Graphene plasmonics for surface-enhanced infrared spectroscopy
title_short Graphene plasmonics for surface-enhanced infrared spectroscopy
title_sort graphene plasmonics for surface enhanced infrared spectroscopy
title_txtP Graphene plasmonics for surface-enhanced infrared spectroscopy
topic FTIR plasmonics sensing Soveltava fysiikka Applied Physics 4023 grafeeni nanorakenteet spektroskopia fokusoidut ionisuihkut graphene nanostructures spectroscopy focused ion beams
topic_facet 4023 Applied Physics FTIR Soveltava fysiikka focused ion beams fokusoidut ionisuihkut grafeeni graphene nanorakenteet nanostructures plasmonics sensing spectroscopy spektroskopia
url https://jyx.jyu.fi/handle/123456789/71392 http://www.urn.fi/URN:NBN:fi:jyu-202008145530
work_keys_str_mv AT plyushchalexander grapheneplasmonicsforsurfaceenhancedinfraredspectroscopy