Microfluidic cancer cell sorting using dielectrophoresis

Mikrofluidiikka mahdollistaa mikrobiologisten partikkeleiden, kuten solujen, viruksien, proteiinien ja DNA:n analysoinnin. Se pystyy täyttämään näiden tiukat elinolojen vaatimukset, joita ovat paine, lämpötila ja kemiallinen koostumus. Tarkoituksena oli kehittää valmistusmenetelmä mikrofluidiselle s...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Balogh, Péter
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2020
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/71291
_version_ 1828193074849775616
author Balogh, Péter
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Balogh, Péter Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Balogh, Péter Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Balogh, Péter
datasource_str_mv jyx
description Mikrofluidiikka mahdollistaa mikrobiologisten partikkeleiden, kuten solujen, viruksien, proteiinien ja DNA:n analysoinnin. Se pystyy täyttämään näiden tiukat elinolojen vaatimukset, joita ovat paine, lämpötila ja kemiallinen koostumus. Tarkoituksena oli kehittää valmistusmenetelmä mikrofluidiselle sirulle, joka pystyisi erottelemaan yksittäisiä fluoresenssilla merkattuja syöpäsoluja. Sirussa kulkevia soluja tarkasteltaisiin spektroskopian menetelmin, ja mikäli solu ilmaisisi fluoresenssia, dielektroforeesinen voima ohjaisi sen erilleen talteen otettavaksi. Valmistamalla tällainen siru, joka pystyisi analysoimaan verinäytteestä tuhansia soluja sekunnissa ja erottelemaan niistä yksittäiset syöpäsolut, pystyttäisiin vaikuttamaan merkittävästi syöpätutkimuken kehitykseen. Lasi on optimaalinen valinta tällaiselle sirulle, sillä sen läpinäkyvyys ja kemiallinen vakaus mahdollistvat spektroskopian ja mikrofluidisen ympäristön tarjoamisen. Tästä syystä siru oli kehitetty käyttämällä substraattina soda-lime lasia. Käyttämällä elektronisuihkulitografiaa, fysikaalista kalvonkasvatusmenetelmää sekä muita mikrofabrikaation työkaluja, siru saatiin valmistettua. Dielektroforeesia varten valmistettiin elektrodit, jotka koostuivat Ti, Au ,Ti ja SiO2 kerroksista. Ne olivat tarpeeksi kestäviä selvitääkseen lasien bondaukseen tarvittavasta korkeasta lämpötilasta (585 °C) sekä hyvin syövyttävästä Piranha liuoksesta. Sirun puhdistusmenetelmät, etsausmaski sekä etsausparametrit optimoitiin tasaisen ja virheettömän pinnan aikaansaamiseksi. Etsausmaskina käytettiin 50 nm Cr ja 200 nm + 100 nm Au, joka kesti 30 µm syvien kanavien etsauksen vetyfluoridilla ja pystyi suojelemaan sen alla olevia elektrodeja. Koejärjestely suoritettiin dielektroforeettisen erottelun havainnollistamiseksi fluoresoivilla polystyreeni partikkeleilla. Partikkelit saatiin onnistuneesti virtaamaan kanavien läpi, mutta niiden dielektroforeettinen ohjaaminen epäonnistui. Tähän syynä oli luultavasti viallinen elektrodi. Uuden sirun valmistus ei ollut mahdollista laitoksen ollessa suljettuna covid-19 pandemian vuoksi. Sirun valmistusohjeet ja niiden parantamisehdotukset antavat kuitenkin vahvan perustan projektin jatkamiselle. Microfluidics grant the possibility for the analysis of microbiological particles such as cells, viruses, proteins, and DNA. It can fulfil the strict requirements for temperature, pressure, and chemical composition set by samples in vivo environment. The aim was to develop the fabrication of a microfluidic chip that would be capable of single cell sorting, fluorescently labelled cancer cells to be more precise. Cells flowing through the system would be analysed using spectroscopy to detect fluorescence. Depending on the result, a dielectrophoretic force would be exerted on the target cell guiding it to a corresponding channel to be collected or discarded. Achieving a high throughput device that could analyse thousands of cells a second while sorting individual cancer cells from blood samples would have a significant impact on cancer research. Glass, being transparent and chemically inert, is an optimal material for spectroscopic analysis and as a microfluidic environment. Thus, a fabrication recipe for a glass (Soda-lime) microfluidic chip including electrodes was developed. Using electron beam lithography and thin film deposition, such a chip was realised with minimised defects. The electrodes consisted of a sandwich of Ti, Au, Ti and SiO2. They could withstand the highly corrosive Piranha treatment for surface activation and the temperature of 585 °C required for the glass bonding. The cleaning procedure of the chip, etch mask, and etching parameters were optimized to minimize pinhole generation and channel roughness. As an etch mask, thin film layers of 50 nm Cr and 200 nm + 100 nm Au were used. It enabled a near defect free etching of 30 µm deep channels in HF while protecting the underlining electrodes. An experimental setup was assembled to demonstrate deflection of fluorescent polystyrene particles illustrating cells. The proper flow of fluorescent particles was established, but the sorting was unsuccessful most likely due to a faulty electrode. The fabrication of a new chip was unfortunately not possible because of the facility lockdown due to the covid-19 pandemic. However, the fabrication recipe and design improvement ideas presented here grant a good foundation for future continuations on this project.
first_indexed 2020-07-30T20:00:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Johansson, Andreas", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Balogh, P\u00e9ter", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-07-30T07:53:44Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-07-30T07:53:44Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71291", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Mikrofluidiikka mahdollistaa mikrobiologisten partikkeleiden, kuten solujen, viruksien, proteiinien ja DNA:n analysoinnin. Se pystyy t\u00e4ytt\u00e4m\u00e4\u00e4n n\u00e4iden tiukat elinolojen vaatimukset, joita ovat paine, l\u00e4mp\u00f6tila ja kemiallinen koostumus. Tarkoituksena oli kehitt\u00e4\u00e4 valmistusmenetelm\u00e4 mikrofluidiselle sirulle, joka pystyisi erottelemaan yksitt\u00e4isi\u00e4 fluoresenssilla merkattuja sy\u00f6p\u00e4soluja. Sirussa kulkevia soluja\ntarkasteltaisiin spektroskopian menetelmin, ja mik\u00e4li solu ilmaisisi fluoresenssia, dielektroforeesinen voima ohjaisi sen erilleen talteen otettavaksi. Valmistamalla t\u00e4llainen siru, joka pystyisi analysoimaan verin\u00e4ytteest\u00e4 tuhansia soluja sekunnissa ja erottelemaan niist\u00e4 yksitt\u00e4iset sy\u00f6p\u00e4solut, pystytt\u00e4isiin vaikuttamaan merkitt\u00e4v\u00e4sti\nsy\u00f6p\u00e4tutkimuken kehitykseen. \n\nLasi on optimaalinen valinta t\u00e4llaiselle sirulle, sill\u00e4 sen l\u00e4pin\u00e4kyvyys ja kemiallinen vakaus mahdollistvat spektroskopian ja mikrofluidisen ymp\u00e4rist\u00f6n tarjoamisen. T\u00e4st\u00e4 syyst\u00e4 siru oli kehitetty k\u00e4ytt\u00e4m\u00e4ll\u00e4 substraattina soda-lime lasia. K\u00e4ytt\u00e4m\u00e4ll\u00e4 elektronisuihkulitografiaa, fysikaalista kalvonkasvatusmenetelm\u00e4\u00e4 sek\u00e4 muita mikrofabrikaation ty\u00f6kaluja, siru saatiin valmistettua. Dielektroforeesia varten\nvalmistettiin elektrodit, jotka koostuivat Ti, Au ,Ti ja SiO2 kerroksista. Ne olivat tarpeeksi kest\u00e4vi\u00e4 selvit\u00e4\u00e4kseen lasien bondaukseen tarvittavasta korkeasta l\u00e4mp\u00f6tilasta (585 \u00b0C) sek\u00e4 hyvin sy\u00f6vytt\u00e4v\u00e4st\u00e4 Piranha liuoksesta. Sirun puhdistusmenetelm\u00e4t, etsausmaski sek\u00e4 etsausparametrit optimoitiin tasaisen ja virheett\u00f6m\u00e4n pinnan aikaansaamiseksi. Etsausmaskina k\u00e4ytettiin 50 nm Cr ja 200 nm + 100 nm Au, joka kesti 30 \u00b5m syvien kanavien etsauksen vetyfluoridilla ja pystyi suojelemaan sen alla olevia elektrodeja. Koej\u00e4rjestely suoritettiin dielektroforeettisen erottelun havainnollistamiseksi fluoresoivilla polystyreeni partikkeleilla. Partikkelit saatiin onnistuneesti virtaamaan kanavien l\u00e4pi, mutta niiden dielektroforeettinen ohjaaminen\nep\u00e4onnistui. T\u00e4h\u00e4n syyn\u00e4 oli luultavasti viallinen elektrodi. Uuden sirun valmistus ei ollut mahdollista laitoksen ollessa suljettuna covid-19 pandemian vuoksi. Sirun valmistusohjeet ja niiden parantamisehdotukset antavat kuitenkin vahvan perustan projektin jatkamiselle.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Microfluidics grant the possibility for the analysis of microbiological particles such as cells, viruses, proteins, and DNA. It can fulfil the strict requirements for temperature,\npressure, and chemical composition set by samples in vivo environment. The aim was to develop the fabrication of a microfluidic chip that would be capable of single cell sorting, fluorescently labelled cancer cells to be more precise. Cells flowing through the system would be analysed using spectroscopy to detect fluorescence. Depending on the result, a dielectrophoretic force would be exerted on the target cell guiding it\nto a corresponding channel to be collected or discarded. Achieving a high throughput device that could analyse thousands of cells a second while sorting individual cancer cells from blood samples would have a significant impact on cancer research.\n\nGlass, being transparent and chemically inert, is an optimal material for spectroscopic analysis and as a microfluidic environment. Thus, a fabrication recipe for a glass (Soda-lime) microfluidic chip including electrodes was developed. Using electron beam lithography and thin film deposition, such a chip was realised with minimised defects. The electrodes consisted of a sandwich of Ti, Au, Ti and SiO2. They could withstand the highly corrosive Piranha treatment for surface activation\nand the temperature of 585 \u00b0C required for the glass bonding. The cleaning procedure of the chip, etch mask, and etching parameters were optimized to minimize pinhole generation and channel roughness. As an etch mask, thin film layers of 50 nm Cr and 200 nm + 100 nm Au were used. It enabled a near defect free etching of 30 \u00b5m deep channels in HF while protecting the underlining electrodes. An experimental setup was assembled to demonstrate deflection of fluorescent polystyrene particles\nillustrating cells. The proper flow of fluorescent particles was established, but the sorting was unsuccessful most likely due to a faulty electrode. The fabrication of a new chip was unfortunately not possible because of the facility lockdown due to the covid-19 pandemic. However, the fabrication recipe and design improvement ideas presented here grant a good foundation for future continuations on this project.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-07-30T07:53:44Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-07-30T07:53:44Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "74", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "glass microfluidics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "wet etching of glass", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "dielectrophoresis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "DEP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "cell sorting", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "fabrication", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Microfluidic cancer cell sorting using dielectrophoresis", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202007305439", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Soveltava fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Applied Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4023", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mikrofluidistiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sy\u00f6p\u00e4solut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ohutkalvot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "solut", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "fysikaalinen kemia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "microfluidics", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cancer cells", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "thin films", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "cells", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "physical chemistry", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_71291
language eng
last_indexed 2025-03-31T20:01:07Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/4e1411df-6e1a-44ac-a46a-a2d06ea59fc5\/download","text":"URN:NBN:fi:jyu-202007305439.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Balogh, Péter Microfluidic cancer cell sorting using dielectrophoresis glass microfluidics wet etching of glass dielectrophoresis DEP cell sorting fabrication Soveltava fysiikka Applied Physics 4023 mikrofluidistiikka syöpäsolut ohutkalvot solut fysikaalinen kemia microfluidics cancer cells thin films cells physical chemistry
title Microfluidic cancer cell sorting using dielectrophoresis
title_full Microfluidic cancer cell sorting using dielectrophoresis
title_fullStr Microfluidic cancer cell sorting using dielectrophoresis Microfluidic cancer cell sorting using dielectrophoresis
title_full_unstemmed Microfluidic cancer cell sorting using dielectrophoresis Microfluidic cancer cell sorting using dielectrophoresis
title_short Microfluidic cancer cell sorting using dielectrophoresis
title_sort microfluidic cancer cell sorting using dielectrophoresis
title_txtP Microfluidic cancer cell sorting using dielectrophoresis
topic glass microfluidics wet etching of glass dielectrophoresis DEP cell sorting fabrication Soveltava fysiikka Applied Physics 4023 mikrofluidistiikka syöpäsolut ohutkalvot solut fysikaalinen kemia microfluidics cancer cells thin films cells physical chemistry
topic_facet 4023 Applied Physics DEP Soveltava fysiikka cancer cells cell sorting cells dielectrophoresis fabrication fysikaalinen kemia glass microfluidics microfluidics mikrofluidistiikka ohutkalvot physical chemistry solut syöpäsolut thin films wet etching of glass
url https://jyx.jyu.fi/handle/123456789/71291 http://www.urn.fi/URN:NBN:fi:jyu-202007305439
work_keys_str_mv AT baloghpeter microfluidiccancercellsortingusingdielectrophoresis