Red light-sensing phytochrome-DNA conjugates for nanotechnology applications

DNA-nanoteknologiassa on kehitetty paljon erilaisia DNA-origamiteknologiaa hyödyntäviä nanokoneita viime vuosikymmenien aikana. Kuitenkaan punavalo-ohjattavia DNA-koneita, joita voitaisiin soveltaa biologisiin käyttökohteisiin, ei ole valmistettu. Tätä varten DNA-koneet pitäisi funktionalisoida puna...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Kettunen, Iida
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Bio- ja ympäristötieteiden laitos, Department of Biological and Environmental Science, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2020
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/71255
_version_ 1828193073964777472
author Kettunen, Iida
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_facet Kettunen, Iida Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä Kettunen, Iida Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_sort Kettunen, Iida
datasource_str_mv jyx
description DNA-nanoteknologiassa on kehitetty paljon erilaisia DNA-origamiteknologiaa hyödyntäviä nanokoneita viime vuosikymmenien aikana. Kuitenkaan punavalo-ohjattavia DNA-koneita, joita voitaisiin soveltaa biologisiin käyttökohteisiin, ei ole valmistettu. Tätä varten DNA-koneet pitäisi funktionalisoida punavaloa aistivilla molekyyleillä. Fytokromit ovat punaista ja pitkäaaltoista punaista valoa aistivia valoreseptoreita, joita tavataan luonnossa kasveilla, bakteereilla, sienillä ja levillä. Valoaistimuksen seurauksena ne muuttavat konformaatiotaan kahden eri tilan välillä. Jotkin fytokromit, kuten Agrobacterium fytokromi 1 (Agp1), muuttavat myös kvaternäärirakennettaan valon seurauksena. Tämän työn tavoite oli valmistaa Agp1-DNA-konjugaatteja ja karakterisoida niiden toiminnallisuutta, jotta niitä voitaisiin hyödyntää punavalokontrolloitavien DNA-koneiden komponentteina. Agp1:stä suunniteltiin ja tuotettiin kaksi pintakysteiineillä varusteltua mutanttia (E379C ja D367C), jotka konjugoitiin DNA-oligonukleotidien kanssa käyttäen dibentso-oktyyli-maleimidia verkkosidoksena. Konjugaattien valokonversiota karakterisoitiin ultravioletti- ja näkyvän valon spektroskopialla ja kvaternäärirakennetta kokoerottelukromatografialla. DNA:n kiinnittäminen ei häirinnyt fytokromien valokonversiota ja Agp1 osoitti merkkejä punavaloriippuvaisesta dimerisaatiosta. E379C-mutantti muodosti huomattavasti enemmän konjugaatteja ja oli siten parempi vaihtoehto DNA-nanokoneille. Tämä työ osoitti, kuinka fytokromeja voidaan muokata, jotta niitä voitaisiin käyttää dynaamisina kytkiminä DNA-nanoteknologian sovelluksissa mahdollistaen uudenlaisten, reversiibelien ja punavalo-ohjattavien DNA-koneiden kehittämisen. DNA nanotechnology has boosted during the past few decades developing a broad range of nanodevices that exploit DNA origami. However, red light-controllable DNA devices that could allow controllability in biological environments have not yet been demonstrated. For this, DNA nanostructures should be functionalized with red light-responding molecules. Phytochromes are red and far-red light-sensing photoreceptors that are naturally encountered with plants, bacteria, fungi and algae. They convert between two conformational states in response to red light illumination. Some phytochromes, such as Agrobacterium phytochrome 1 (Agp1), additionally change their quaternary structure in red light-dependent manner. The aim of this thesis was to conjugate Agp1 with DNA oligonucleotides, and characterize their functionality for their use in red light-controllable DNA nanodevices. Two Agp1 mutants with surface cysteines (E379C and D367C) were produced and conjugated with DNA oligonucleotides using dibenzocyclooctyl-maleimide as a crosslinker. The photoconversion of the conjugates was characterized with ultraviolet-visible light spectroscopy, and the red light-induced dimerization was studied with size exclusion chromatography. These experiments revealed that the photoconversion was unaffected by the DNA attachment, and suggested Agp1 dimerization in consequence to red light stimuli. The E379C mutant was a better candidate for DNA nanodevices, as it had a significantly higher conjugation yield. This study demonstrated how phytochromes can be modified in order to use them as dynamic switches for DNA nanodevices, and thus enabling the preparation of novel, reversible and red light-controllable DNA machines.
first_indexed 2024-09-11T08:49:24Z
format Pro gradu
fullrecord [{"key": "dc.contributor.advisor", "value": "Ihalainen, Janne", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Ij\u00e4s, Heini", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kettunen, Iida", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-07-28T06:50:45Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-07-28T06:50:45Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71255", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "DNA-nanoteknologiassa on kehitetty paljon erilaisia DNA-origamiteknologiaa hy\u00f6dynt\u00e4vi\u00e4 nanokoneita viime vuosikymmenien aikana. Kuitenkaan punavalo-ohjattavia DNA-koneita, joita voitaisiin soveltaa biologisiin k\u00e4ytt\u00f6kohteisiin, ei ole valmistettu. T\u00e4t\u00e4 varten DNA-koneet pit\u00e4isi funktionalisoida punavaloa aistivilla molekyyleill\u00e4. Fytokromit ovat punaista ja pitk\u00e4aaltoista punaista valoa aistivia valoreseptoreita, joita tavataan luonnossa kasveilla, bakteereilla, sienill\u00e4 ja levill\u00e4. Valoaistimuksen seurauksena ne muuttavat konformaatiotaan kahden eri tilan v\u00e4lill\u00e4. Jotkin fytokromit, kuten Agrobacterium fytokromi 1 (Agp1), muuttavat my\u00f6s kvatern\u00e4\u00e4rirakennettaan valon seurauksena. T\u00e4m\u00e4n ty\u00f6n tavoite oli valmistaa Agp1-DNA-konjugaatteja ja karakterisoida niiden toiminnallisuutta, jotta niit\u00e4 voitaisiin hy\u00f6dynt\u00e4\u00e4 punavalokontrolloitavien DNA-koneiden komponentteina. Agp1:st\u00e4 suunniteltiin ja tuotettiin kaksi pintakysteiineill\u00e4 varusteltua mutanttia (E379C ja D367C), jotka konjugoitiin DNA-oligonukleotidien kanssa k\u00e4ytt\u00e4en dibentso-oktyyli-maleimidia verkkosidoksena. Konjugaattien valokonversiota karakterisoitiin ultravioletti- ja n\u00e4kyv\u00e4n valon spektroskopialla ja kvatern\u00e4\u00e4rirakennetta kokoerottelukromatografialla. DNA:n kiinnitt\u00e4minen ei h\u00e4irinnyt fytokromien valokonversiota ja Agp1 osoitti merkkej\u00e4 punavaloriippuvaisesta dimerisaatiosta. E379C-mutantti muodosti huomattavasti enemm\u00e4n konjugaatteja ja oli siten parempi vaihtoehto DNA-nanokoneille. T\u00e4m\u00e4 ty\u00f6 osoitti, kuinka fytokromeja voidaan muokata, jotta niit\u00e4 voitaisiin k\u00e4ytt\u00e4\u00e4 dynaamisina kytkimin\u00e4 DNA-nanoteknologian sovelluksissa mahdollistaen uudenlaisten, reversiibelien ja punavalo-ohjattavien DNA-koneiden kehitt\u00e4misen.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "DNA nanotechnology has boosted during the past few decades developing a broad range of nanodevices that exploit DNA origami. However, red light-controllable DNA devices that could allow controllability in biological environments have not yet been demonstrated. For this, DNA nanostructures should be functionalized with red light-responding molecules. Phytochromes are red and far-red light-sensing photoreceptors that are naturally encountered with plants, bacteria, fungi and algae. They convert between two conformational states in response to red light illumination. Some phytochromes, such as Agrobacterium phytochrome 1 (Agp1), additionally change their quaternary structure in red light-dependent manner. The aim of this thesis was to conjugate Agp1 with DNA oligonucleotides, and characterize their functionality for their use in red light-controllable DNA nanodevices. Two Agp1 mutants with surface cysteines (E379C and D367C) were produced and conjugated with DNA oligonucleotides using dibenzocyclooctyl-maleimide as a crosslinker. The photoconversion of the conjugates was characterized with ultraviolet-visible light spectroscopy, and the red light-induced dimerization was studied with size exclusion chromatography. These experiments revealed that the photoconversion was unaffected by the DNA attachment, and suggested Agp1 dimerization in consequence to red light stimuli. The E379C mutant was a better candidate for DNA nanodevices, as it had a significantly higher conjugation yield. This study demonstrated how phytochromes can be modified in order to use them as dynamic switches for DNA nanodevices, and thus enabling the preparation of novel, reversible and red light-controllable DNA machines.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-07-28T06:50:45Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-07-28T06:50:45Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "68", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Agp1", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "protein-DNA conjugation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "quaternary structure", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "size exclusion chromatography", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Red light-sensing phytochrome-DNA conjugates for nanotechnology applications", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202007285404", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Solu- ja molekyylibiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Cell and molecular biology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4013", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kromatografia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanotekniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "chromatography", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanotechnology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/en/workspaces/facilities).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_71255
language eng
last_indexed 2025-03-31T20:02:54Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Kettunen, Iida Red light-sensing phytochrome-DNA conjugates for nanotechnology applications Agp1 protein-DNA conjugation quaternary structure size exclusion chromatography Solu- ja molekyylibiologia Cell and molecular biology 4013 kromatografia nanotekniikka chromatography nanotechnology
title Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
title_full Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
title_fullStr Red light-sensing phytochrome-DNA conjugates for nanotechnology applications Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
title_full_unstemmed Red light-sensing phytochrome-DNA conjugates for nanotechnology applications Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
title_short Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
title_sort red light sensing phytochrome dna conjugates for nanotechnology applications
title_txtP Red light-sensing phytochrome-DNA conjugates for nanotechnology applications
topic Agp1 protein-DNA conjugation quaternary structure size exclusion chromatography Solu- ja molekyylibiologia Cell and molecular biology 4013 kromatografia nanotekniikka chromatography nanotechnology
topic_facet 4013 Agp1 Cell and molecular biology Solu- ja molekyylibiologia chromatography kromatografia nanotechnology nanotekniikka protein-DNA conjugation quaternary structure size exclusion chromatography
url https://jyx.jyu.fi/handle/123456789/71255 http://www.urn.fi/URN:NBN:fi:jyu-202007285404
work_keys_str_mv AT kettuneniida redlightsensingphytochromednaconjugatesfornanotechnologyapplications