Towards explainable artificial intelligence (XAI)

2000-luvun aikana tekoälysovellukset ovat saavuttaneet erinomaisen suorituskyvyn useissa eri tehtävissä. Suuret datajoukot, kasvava laskennallinen teho sekä yhä monimutkaisemmat koneoppimismallit ovat mahdollistaneet sen. Valitettavasti nämä monimutkaiset mallit ovat usein vain mustia laatikoita ihm...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Haverinen, Tiia
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2020
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/71252
_version_ 1826225715522043904
author Haverinen, Tiia
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Haverinen, Tiia Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Haverinen, Tiia Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Haverinen, Tiia
datasource_str_mv jyx
description 2000-luvun aikana tekoälysovellukset ovat saavuttaneet erinomaisen suorituskyvyn useissa eri tehtävissä. Suuret datajoukot, kasvava laskennallinen teho sekä yhä monimutkaisemmat koneoppimismallit ovat mahdollistaneet sen. Valitettavasti nämä monimutkaiset mallit ovat usein vain mustia laatikoita ihmiskäyttäjille ja käyttäjällä on vaikeuksia ymmärtää ja luottaa tekoälysysteemin lopputuloksiin. Selittävän tekoälyn osa-alueella on ollut suuri määrä tutkimusta sellaisten menetelmien kehittämiseksi, jotka lisäisivät tekoälysysteemien selittävyyttä. Tämä opinnäytetyö sisältää sekä kirjallisuuskatsauksen selittävän tekoälyn tutkimuksesta että kokeilun, jossa kartoitettiin yksinkertaisilla tekoälymenetelmillä ECR-ionilähteen optimaalisia parametreja maksimaaliselle ionisuihkun intensiteetille. In the 21st century, the applications of artificial intelligence (AI) have achieved great performance in various tasks. Large datasets, increasing computational power and more complex machine learning models have made it possible. Unfortunately, these complex models are often only black boxes to human users and the user has difficulties to understand and trust the outcomes of AI systems. There has been a great amount of research in the field of explainable artificial intelligence (XAI) to develop methods that increase the explainability of AI systems. In addition to a literature review of the research in XAI, the present thesis includes a small project in which the parameters of an ECR ion source have been surveyed via simple machine learning methods in order to find the optimal parameters for the maximal ion beam intensity.
first_indexed 2020-07-28T20:04:54Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Hakanen, Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "\u00c4yr\u00e4m\u00f6, Sami", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Haverinen, Tiia", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-07-28T06:40:44Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-07-28T06:40:44Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71252", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "2000-luvun aikana teko\u00e4lysovellukset ovat saavuttaneet erinomaisen suorituskyvyn useissa eri teht\u00e4viss\u00e4. Suuret datajoukot, kasvava laskennallinen teho sek\u00e4 yh\u00e4 monimutkaisemmat koneoppimismallit ovat mahdollistaneet sen. Valitettavasti n\u00e4m\u00e4 monimutkaiset mallit ovat usein vain mustia laatikoita ihmisk\u00e4ytt\u00e4jille ja k\u00e4ytt\u00e4j\u00e4ll\u00e4\non vaikeuksia ymm\u00e4rt\u00e4\u00e4 ja luottaa teko\u00e4lysysteemin lopputuloksiin. Selitt\u00e4v\u00e4n teko\u00e4lyn osa-alueella on ollut suuri m\u00e4\u00e4r\u00e4 tutkimusta sellaisten menetelmien kehitt\u00e4miseksi, jotka lis\u00e4isiv\u00e4t teko\u00e4lysysteemien selitt\u00e4vyytt\u00e4. T\u00e4m\u00e4 opinn\u00e4ytety\u00f6 sis\u00e4lt\u00e4\u00e4 sek\u00e4 kirjallisuuskatsauksen selitt\u00e4v\u00e4n teko\u00e4lyn tutkimuksesta ett\u00e4 kokeilun, jossa kartoitettiin yksinkertaisilla teko\u00e4lymenetelmill\u00e4 ECR-ionil\u00e4hteen optimaalisia parametreja maksimaaliselle ionisuihkun intensiteetille.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In the 21st century, the applications of artificial intelligence (AI) have achieved great performance in various tasks. Large datasets, increasing computational power and more complex machine learning models have made it possible. Unfortunately, these complex models are often only black boxes to human users and the user has difficulties to understand and trust the outcomes of AI systems. There has been a great amount of research in the field\nof explainable artificial intelligence (XAI) to develop methods that increase the explainability of AI systems. In addition to a literature review of the research in XAI, the present thesis includes a small project in which the parameters of an ECR ion source have been surveyed via simple machine learning methods in order to find the optimal parameters for the maximal ion beam intensity.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-07-28T06:40:44Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-07-28T06:40:44Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "71", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "explainability", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "interpretability", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "ion sources", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Towards explainable artificial intelligence (XAI)", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202007285401", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "teko\u00e4ly", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ionit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "artificial intelligence", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ions", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_71252
language eng
last_indexed 2025-02-18T10:56:02Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e57f876b-f04e-4544-89ea-f5b2fbee374e\/download","text":"URN:NBN:fi:jyu-202007285401.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Haverinen, Tiia Towards explainable artificial intelligence (XAI) explainability interpretability ion sources Tietotekniikka Mathematical Information Technology 602 tekoäly koneoppiminen ionit artificial intelligence machine learning ions
title Towards explainable artificial intelligence (XAI)
title_full Towards explainable artificial intelligence (XAI)
title_fullStr Towards explainable artificial intelligence (XAI) Towards explainable artificial intelligence (XAI)
title_full_unstemmed Towards explainable artificial intelligence (XAI) Towards explainable artificial intelligence (XAI)
title_short Towards explainable artificial intelligence (XAI)
title_sort towards explainable artificial intelligence xai
title_txtP Towards explainable artificial intelligence (XAI)
topic explainability interpretability ion sources Tietotekniikka Mathematical Information Technology 602 tekoäly koneoppiminen ionit artificial intelligence machine learning ions
topic_facet 602 Mathematical Information Technology Tietotekniikka artificial intelligence explainability interpretability ion sources ionit ions koneoppiminen machine learning tekoäly
url https://jyx.jyu.fi/handle/123456789/71252 http://www.urn.fi/URN:NBN:fi:jyu-202007285401
work_keys_str_mv AT haverinentiia towardsexplainableartificialintelligencexai