INFRINGER a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning

Tässä tutkielmassa kehitetään interaktiivinen menetelmä – nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää mieltymyksiä käyttäen arvofunktiota mallinaan. Arvofunktio mallinnetaan käyttäen...

Full description

Bibliographic Details
Main Author: Misitano, Giovanni
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/71062
_version_ 1828193073910251520
author Misitano, Giovanni
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Misitano, Giovanni Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Misitano, Giovanni Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Misitano, Giovanni
datasource_str_mv jyx
description Tässä tutkielmassa kehitetään interaktiivinen menetelmä – nimeltään INFRINGER – monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelmä kykenee oppimaan päätöksentekijän mieltymykset (preferenssit), ja esittää mieltymyksiä käyttäen arvofunktiota mallinaan. Arvofunktio mallinnetaan käyttäen koneoppia, jossa sovelletaan todennäköisyyksiä hyödyntäviä sääntöpohjaisia järjestelmiä. Kehitettyä menetelmää hyödynnetään tapaustutkimuksessa, jossa päätöksentekijää tuetaan Suomen metsätalouteen liittyvän monitavoitteisen optimointiongelman ratkaisemisessa. Tapaustutkimuksen tulosten pohjalta kehitetyn menetelmän kykyä tukea päätöksentekijää, ja oppia päätöksentekijän mieltymykset, arvioidaan. Lopuksi kehitettyä menetelmää verrataan lyhyesti vastaaviin kirjallisuudessa esiintyviin menetelmiin, ja menetelmän kelpoisuutta selitettävänä koneopin mallina pohditaan. An interactive method – INFRINGER – for solving multi-objective optimization problems is developed in this thesis. The method is able to learn a decision maker’s preferences using a value function model. The value function is modelled using machine learning in conjunction with belief-rule based systems. A case study, consisting of a problem in Finnish forestation, is then conducted where a human decision maker is aided in the decision making process using the developed method. Based on the results of the case study, the developed method is assessed in its ability to aid the decision maker to reach a satisfying solution, and its ability to elicit the decision maker’s preferences. Lastly, the method is briefly compared qualitatively to other similar methods in existing literature, and the viability of the method as a potential explainable model is briefly discussed.
first_indexed 2024-09-11T08:52:21Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Hakanen, Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Miettinen, Kaisa", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Misitano, Giovanni", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-07-06T05:45:42Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-07-06T05:45:42Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/71062", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa kehitet\u00e4\u00e4n interaktiivinen menetelm\u00e4 \u2013\nnimelt\u00e4\u00e4n INFRINGER \u2013 monitavoiteoptimoinnin ongelmien ratkaisemisen tueksi. Menetelm\u00e4\nkykenee oppimaan p\u00e4\u00e4t\u00f6ksentekij\u00e4n mieltymykset (preferenssit), ja esitt\u00e4\u00e4 mieltymyksi\u00e4\nk\u00e4ytt\u00e4en arvofunktiota mallinaan. Arvofunktio mallinnetaan k\u00e4ytt\u00e4en koneoppia, jossa sovelletaan todenn\u00e4k\u00f6isyyksi\u00e4 hy\u00f6dynt\u00e4vi\u00e4 s\u00e4\u00e4nt\u00f6pohjaisia j\u00e4rjestelmi\u00e4. Kehitetty\u00e4 menetelm\u00e4\u00e4\nhy\u00f6dynnet\u00e4\u00e4n tapaustutkimuksessa, jossa p\u00e4\u00e4t\u00f6ksentekij\u00e4\u00e4 tuetaan Suomen mets\u00e4talouteen\nliittyv\u00e4n monitavoitteisen optimointiongelman ratkaisemisessa. Tapaustutkimuksen tulosten\npohjalta kehitetyn menetelm\u00e4n kyky\u00e4 tukea p\u00e4\u00e4t\u00f6ksentekij\u00e4\u00e4, ja oppia p\u00e4\u00e4t\u00f6ksentekij\u00e4n mieltymykset, \narvioidaan. Lopuksi kehitetty\u00e4 menetelm\u00e4\u00e4 verrataan lyhyesti vastaaviin kirjallisuudessa esiintyviin menetelmiin, ja menetelm\u00e4n kelpoisuutta selitett\u00e4v\u00e4n\u00e4 koneopin mallina pohditaan.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "An interactive method \u2013 INFRINGER \u2013 for solving multi-objective optimization\nproblems is developed in this thesis. The method is able to learn a decision maker\u2019s preferences using a value function model. The value function is modelled using machine learning\nin conjunction with belief-rule based systems. A case study, consisting of a problem in\nFinnish forestation, is then conducted where a human decision maker is aided in the decision making process using the developed method. Based on the results of the case study, the\ndeveloped method is assessed in its ability to aid the decision maker to reach a satisfying solution, and its ability to elicit the decision maker\u2019s preferences. Lastly, the method is briefly\ncompared qualitatively to other similar methods in existing literature, and the viability of the\nmethod as a potential explainable model is briefly discussed.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-07-06T05:45:42Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-07-06T05:45:42Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "113", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "data-driven", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "multiple criteria", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "explainable AI", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "rule system", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker\u2019s preferences utilizing machine learning", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202007065235", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "p\u00e4\u00e4t\u00f6ksenteko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "pareto-tehokkuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "vuorovaikutus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "menetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "decision making", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimisation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Pareto efficiency", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "interaction", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "methods", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_71062
language eng
last_indexed 2025-03-31T20:03:28Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/6d3d92ff-2435-43ab-953d-981b7f42c34d\/download","text":"URN:NBN:fi:jyu-202007065235.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Misitano, Giovanni INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning data-driven multiple criteria explainable AI rule system Tietotekniikka Mathematical Information Technology 602 päätöksenteko optimointi koneoppiminen pareto-tehokkuus vuorovaikutus menetelmät decision making optimisation machine learning Pareto efficiency interaction methods
title INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
title_full INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
title_fullStr INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
title_full_unstemmed INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
title_short INFRINGER
title_sort infringer a novel interactive multi objective optimization method able to learn a decision maker s preferences utilizing machine learning
title_sub a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
title_txtP INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
topic data-driven multiple criteria explainable AI rule system Tietotekniikka Mathematical Information Technology 602 päätöksenteko optimointi koneoppiminen pareto-tehokkuus vuorovaikutus menetelmät decision making optimisation machine learning Pareto efficiency interaction methods
topic_facet 602 Mathematical Information Technology Pareto efficiency Tietotekniikka data-driven decision making explainable AI interaction koneoppiminen machine learning menetelmät methods multiple criteria optimisation optimointi pareto-tehokkuus päätöksenteko rule system vuorovaikutus
url https://jyx.jyu.fi/handle/123456789/71062 http://www.urn.fi/URN:NBN:fi:jyu-202007065235
work_keys_str_mv AT misitanogiovanni infringeranovelinteractivemultiobjectiveoptimizationmethodabletolearnadecisionm