_version_ |
1799745318713032704
|
annif_keywords_txtF_mv |
machine learning
optimisation
decision theory
decision making
mathematical optimisation
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p13477
http://www.yso.fi/onto/yso/p13478
http://www.yso.fi/onto/yso/p8743
http://www.yso.fi/onto/yso/p17635
|
author |
Misitano, Giovanni
|
author2 |
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
Information Technology
Jyväskylän yliopisto
University of Jyväskylä
Tietotekniikka
Mathematical Information Technology
602
|
author_facet |
Misitano, Giovanni
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
Information Technology
Jyväskylän yliopisto
University of Jyväskylä
Tietotekniikka
Mathematical Information Technology
602
Misitano, Giovanni
|
author_sort |
Misitano, Giovanni
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Informaatioteknologia
|
faculty_txtF |
Informaatioteknologian tiedekunta
|
first_indexed |
2020-07-06T20:00:42Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Maisterivaiheen työ
|
free_online_boolean |
1
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning</title><creator>Misitano, Giovanni</creator><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="laitos" lang="fi">Informaatioteknologia</contributor><contributor type="laitos" lang="en">Information Technology</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="oppiaine" lang="fi">Tietotekniikka</contributor><contributor type="oppiaine" lang="en">Mathematical Information Technology</contributor><contributor type="oppiainekoodi">602</contributor><subject type="other">data-driven</subject><subject type="other">multiple criteria</subject><subject type="other">explainable AI</subject><subject type="other">rule system</subject><subject type="yso">päätöksenteko</subject><subject type="yso">optimointi</subject><subject type="yso">koneoppiminen</subject><subject type="yso">pareto-tehokkuus</subject><subject type="yso">vuorovaikutus</subject><subject type="yso">menetelmät</subject><subject type="yso">decision making</subject><subject type="yso">optimisation</subject><subject type="yso">machine learning</subject><subject type="yso">Pareto efficiency</subject><subject type="yso">interaction</subject><subject type="yso">methods</subject><available>2020-07-06T05:45:42Z</available><issued>2020</issued><type lang="en">Master’s thesis</type><type lang="fi">Pro gradu -tutkielma</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/71062</identifier><identifier type="urn">URN:NBN:fi:jyu-202007065235</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-202007065235</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/71062/1/URN%3aNBN%3afi%3ajyu-202007065235.pdf" name="URN:NBN:fi:jyu-202007065235.pdf" type="application/pdf" length="8635054" sequence="1"/><recordID>123456789_71062</recordID></qualifieddc>
|
id |
jyx.123456789_71062
|
language |
eng
|
last_indexed |
2024-05-13T20:05:04Z
|
main_date |
2020-01-01T00:00:00Z
|
main_date_str |
2020
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/71062\/1\/URN%3aNBN%3afi%3ajyu-202007065235.pdf","text":"URN:NBN:fi:jyu-202007065235.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
602
|
publication_first_indexed |
2020-07-06T20:00:42Z
|
publishDate |
2020
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Misitano, Giovanni
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
data-driven
multiple criteria
explainable AI
rule system
päätöksenteko
optimointi
koneoppiminen
pareto-tehokkuus
vuorovaikutus
menetelmät
decision making
optimisation
machine learning
Pareto efficiency
interaction
methods
|
subject_txtF |
Tietotekniikka
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_71062&index=0&size=large
|
title |
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
title_full |
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
title_fullStr |
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
title_full_unstemmed |
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
title_short |
INFRINGER
|
title_sort |
infringer a novel interactive multi objective optimization method able to learn a decision maker s preferences utilizing machine learning
|
title_sub |
a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
title_txtP |
INFRINGER : a novel interactive multi-objective optimization method able to learn a decision maker’s preferences utilizing machine learning
|
topic |
data-driven
multiple criteria
explainable AI
rule system
päätöksenteko
optimointi
koneoppiminen
pareto-tehokkuus
vuorovaikutus
menetelmät
decision making
optimisation
machine learning
Pareto efficiency
interaction
methods
|
topic_facet |
Pareto efficiency
data-driven
decision making
explainable AI
interaction
koneoppiminen
machine learning
menetelmät
methods
multiple criteria
optimisation
optimointi
pareto-tehokkuus
päätöksenteko
rule system
vuorovaikutus
|
url |
https://jyx.jyu.fi/handle/123456789/71062
http://www.urn.fi/URN:NBN:fi:jyu-202007065235
|
work_keys_str_mv |
AT misitanogiovanni infringeranovelinteractivemultiobjectiveoptimizationmethodabletolearnadecisionm
|