Graphene-based devices for biological sensing

Tämän Pro gradu -tutkielman tavoitteena oli tutkia grafeenin käyttöä biologisessa havainnoinnissa. Tutkielman teoreettinen osio aloitettiin lyhyella katsauksella grafeenin fysikaalisista ominaisuuksista. Osiossa esiteltiiny lyhyesti kaksi erilaista mittausasetelmaa: kanavatransistori ja usean elektr...

Full description

Bibliographic Details
Main Author: Kaaripuro, Henri
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Kemian laitos, Department of Chemistry, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/70424
_version_ 1826225767504150528
author Kaaripuro, Henri
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_facet Kaaripuro, Henri Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä Kaaripuro, Henri Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_sort Kaaripuro, Henri
datasource_str_mv jyx
description Tämän Pro gradu -tutkielman tavoitteena oli tutkia grafeenin käyttöä biologisessa havainnoinnissa. Tutkielman teoreettinen osio aloitettiin lyhyella katsauksella grafeenin fysikaalisista ominaisuuksista. Osiossa esiteltiiny lyhyesti kaksi erilaista mittausasetelmaa: kanavatransistori ja usean elektrodin asetelma. Teoreettinen osio päätettiin esittelemällä kanavatransistorien käyttöä biologisten molekyylien ja elektrogeenisten solujen havainnoinnissa, sekä niiden hyödyntämistä neurobiologiassa. Kokeellisessa osiosa tutkittiin grafeenin kykyä sammuttaa fluoresenssia päällystämällä se biotinyloidulla naudan seerumin albumiinilla (engl. bovine serum albumin), jonka biotiineihin kiinnitettiin avidiinia, johon oli kovalenttisesti sidottu väriainetta (fluoresiini isotiosyanaatti). Avidiini on proteiini, joka sitoutuu tiukasti biotiiniin. Molemmilla tutkituilla grafeenialueilla oli ruudukko kaksifotonihapetettua grafeenioksidia, joista eri ruutuja oli säteilytetty eri parametrien mukaisesti. Lisäksi eri alueilla sijaitsevilla ruuduilla oli eri leveydet. Osio pohjustettiin teoreettisella katsauksella mittaustekniikoista, naudan seerumin albumiinin kiinnittymisestä pintoihin, ja fluoresenssin sammumisesta sekä yleisesti että grafeenin tapauksessa. Näytettä tutkittiin ennen proteiinilla päällystämistä ja sen jälkeen optisella mikroskopialla, atomivoimamikroskopialla ja Raman-spektroskopialla. Proteiinilla päällystämisen jälkeen näytettä tutkittiin myös fluoresenssin elinaika -mikroskopialla. Grafeenin integroitujen D- ja G-piikkien suhdetta (I(D)/I(G)) pidettiin materiaalin epäjärjestyksen mittarina. Sen havaittiin kasvavan säteilytysparametrien, laserpulssin energian ja säteilytysajan, kasvaessa. I(D)/I(G) kasvaessa hapetettujen neliöiden korkeuden havaittiin kasvavan, odotusten mukaisesti, mutta myös säteilytetyn pinta-alan havaittiin vaikuttavan niiden korkeuteen. Fluoresenssin keskiarvoisen elinajan havaittiin riippuvan suoraan hapetetun neliön korkeudesta, ja Pearsonin R -arvo 0,95 saavutettiin molempien ruudukkojen lineaarisille sovituksille. Sovituksien kulmakertoimien ja leikkauspisteiden havaittiin eroavan merkittävästi keskenään, mikä viittaa neliöiden pinta-alan vaikutukseen. Tilanne neliöiden pinnalla vastaa todennäköisesti monien eri elinaikojen jakaumaa, joka aiheutuu väriainemolekyylien monista eri asennoista ja etäisyyksistä grafeenin pinnasta. Kaksi lineaarisesti käyttäytyvää elinaikakomponenttia pystyttiin erittelemään, mutta kolmas komponentti on ylisovittava. The aim of this Master’s thesis was to study the application of graphene in biological sensing. The theoretical section is set up with a short overview of the basic physical properties of graphene. Two different measurement configurations, field effect transistor and multielectrode array, are discussed briefly. The remaining section covers the detection of different biological molecules and electrogenic cells using the transistor setup, and application of these devices in neurobiology. In the experimental section, fluorescence quenching properties of graphene were studied by coating the material with biotinylated bovine serum albumin, which had a dye molecule (fluorescein isothiocyanate) bound to it via avidin. Avidin is a protein which binds strongly to biotin. The studied areas of graphene contained two grids of two-photon oxidized graphene squares: different squares having different irradiation parameters, and different grids having squares of differing width. The section begins with a theoretical review of the measurement techniques, surface adsorption of bovine serum albumin, and fluorescence quenching in general as well as in the case of graphene. The sample was studied before and after protein functionalization by optical microscopy, atomic force microscopy and Raman spectroscopy, and by fluorescence lifetime imaging microscopy after protein functionalization. The ratio of graphene’s integrated D and G bands (I(D)/I(G)) is used as a measure of disorder in the material. I(D/)I(G) was found to depend somewhat linearly on irradiation parameters, laser pulse energy and irradiation time. The height of the oxidized squares was found to increase nonlinearly as I(D)/I(G) did, as expected, but it was also noted to be affected by the size of the irradiated area. The average fluorescence lifetime was found to be linearly dependent on the square height, and Pearson's R value 0.95 for measurements on both grids were achieved. The interception and slope values of the fits were largely different, implying that the square area has an effect on the behavior. The situation at hand is most likely a distribution of lifetimes, brought up by the dye molecules residing at many varying distances from the graphene. Two linearly behaving lifetimes could also be extracted, but a third one is filling the fit with barely a sign of determinism, indicating overfitting.
first_indexed 2020-06-24T20:06:08Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Pettersson, Mika", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kaaripuro, Henri", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-06-24T11:48:26Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-06-24T11:48:26Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/70424", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n Pro gradu -tutkielman tavoitteena oli tutkia grafeenin k\u00e4ytt\u00f6\u00e4 biologisessa havainnoinnissa. Tutkielman\nteoreettinen osio aloitettiin lyhyella katsauksella grafeenin fysikaalisista ominaisuuksista. Osiossa\nesiteltiiny lyhyesti kaksi erilaista mittausasetelmaa: kanavatransistori ja usean elektrodin asetelma.\nTeoreettinen osio p\u00e4\u00e4tettiin esittelem\u00e4ll\u00e4 kanavatransistorien k\u00e4ytt\u00f6\u00e4 biologisten molekyylien ja elektrogeenisten\nsolujen havainnoinnissa, sek\u00e4 niiden hy\u00f6dynt\u00e4mist\u00e4 neurobiologiassa.\nKokeellisessa osiosa tutkittiin grafeenin kyky\u00e4 sammuttaa fluoresenssia p\u00e4\u00e4llyst\u00e4m\u00e4ll\u00e4 se biotinyloidulla\nnaudan seerumin albumiinilla (engl. bovine serum albumin), jonka biotiineihin kiinnitettiin avidiinia,\njohon oli kovalenttisesti sidottu v\u00e4riainetta (fluoresiini isotiosyanaatti). Avidiini on proteiini, joka sitoutuu\ntiukasti biotiiniin. Molemmilla tutkituilla grafeenialueilla oli ruudukko kaksifotonihapetettua grafeenioksidia,\njoista eri ruutuja oli s\u00e4teilytetty eri parametrien mukaisesti. Lis\u00e4ksi eri alueilla sijaitsevilla\nruuduilla oli eri leveydet. Osio pohjustettiin teoreettisella katsauksella mittaustekniikoista, naudan seerumin\nalbumiinin kiinnittymisest\u00e4 pintoihin, ja fluoresenssin sammumisesta sek\u00e4 yleisesti ett\u00e4 grafeenin\ntapauksessa. N\u00e4ytett\u00e4 tutkittiin ennen proteiinilla p\u00e4\u00e4llyst\u00e4mist\u00e4 ja sen j\u00e4lkeen optisella mikroskopialla,\natomivoimamikroskopialla ja Raman-spektroskopialla. Proteiinilla p\u00e4\u00e4llyst\u00e4misen j\u00e4lkeen n\u00e4ytett\u00e4 tutkittiin\nmy\u00f6s fluoresenssin elinaika -mikroskopialla.\nGrafeenin integroitujen D- ja G-piikkien suhdetta (I(D)/I(G)) pidettiin materiaalin ep\u00e4j\u00e4rjestyksen mittarina.\nSen havaittiin kasvavan s\u00e4teilytysparametrien, laserpulssin energian ja s\u00e4teilytysajan, kasvaessa.\nI(D)/I(G) kasvaessa hapetettujen neli\u00f6iden korkeuden havaittiin kasvavan, odotusten mukaisesti, mutta\nmy\u00f6s s\u00e4teilytetyn pinta-alan havaittiin vaikuttavan niiden korkeuteen. Fluoresenssin keskiarvoisen elinajan\nhavaittiin riippuvan suoraan hapetetun neli\u00f6n korkeudesta, ja Pearsonin R -arvo 0,95 saavutettiin\nmolempien ruudukkojen lineaarisille sovituksille. Sovituksien kulmakertoimien ja leikkauspisteiden havaittiin\neroavan merkitt\u00e4v\u00e4sti kesken\u00e4\u00e4n, mik\u00e4 viittaa neli\u00f6iden pinta-alan vaikutukseen. Tilanne neli\u00f6iden\npinnalla vastaa todenn\u00e4k\u00f6isesti monien eri elinaikojen jakaumaa, joka aiheutuu v\u00e4riainemolekyylien\nmonista eri asennoista ja et\u00e4isyyksist\u00e4 grafeenin pinnasta. Kaksi lineaarisesti k\u00e4ytt\u00e4ytyv\u00e4\u00e4 elinaikakomponenttia\npystyttiin erittelem\u00e4\u00e4n, mutta kolmas komponentti on ylisovittava.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The aim of this Master\u2019s thesis was to study the application of graphene in biological sensing. The theoretical\nsection is set up with a short overview of the basic physical properties of graphene. Two different\nmeasurement configurations, field effect transistor and multielectrode array, are discussed briefly. The\nremaining section covers the detection of different biological molecules and electrogenic cells using the\ntransistor setup, and application of these devices in neurobiology.\nIn the experimental section, fluorescence quenching properties of graphene were studied by coating the\nmaterial with biotinylated bovine serum albumin, which had a dye molecule (fluorescein isothiocyanate)\nbound to it via avidin. Avidin is a protein which binds strongly to biotin. The studied areas of graphene\ncontained two grids of two-photon oxidized graphene squares: different squares having different irradiation\nparameters, and different grids having squares of differing width. The section begins with a\ntheoretical review of the measurement techniques, surface adsorption of bovine serum albumin, and fluorescence\nquenching in general as well as in the case of graphene. The sample was studied before and\nafter protein functionalization by optical microscopy, atomic force microscopy and Raman spectroscopy,\nand by fluorescence lifetime imaging microscopy after protein functionalization.\nThe ratio of graphene\u2019s integrated D and G bands (I(D)/I(G)) is used as a measure of disorder in\nthe material. I(D/)I(G) was found to depend somewhat linearly on irradiation parameters, laser pulse\nenergy and irradiation time. The height of the oxidized squares was found to increase nonlinearly as\nI(D)/I(G) did, as expected, but it was also noted to be affected by the size of the irradiated area. The\naverage fluorescence lifetime was found to be linearly dependent on the square height, and Pearson's\nR value 0.95 for measurements on both grids were achieved. The interception and slope values of the\nfits were largely different, implying that the square area has an effect on the behavior. The situation at\nhand is most likely a distribution of lifetimes, brought up by the dye molecules residing at many varying\ndistances from the graphene. Two linearly behaving lifetimes could also be extracted, but a third one is\nfilling the fit with barely a sign of determinism, indicating overfitting.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-06-24T11:48:26Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-06-24T11:48:26Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "121", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "FLIM", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "fluorescence lifetime imaging microscopy", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "lifetime", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Raman", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "two photon oxidized", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "FET", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "field effect transistor", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Graphene-based devices for biological sensing", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202006244614", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Kemian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Chemistry", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysikaalinen kemia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physical Chemistry", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4032", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeeni", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeenioksidi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spektroskopia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteiinit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "atomivoimamikroskopia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanorakenteet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "graphene", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "graphene oxide", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "spectroscopy", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteins", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "atomic force microscopy", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "nanostructures", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_70424
language eng
last_indexed 2025-02-18T10:54:34Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/40bae258-71d7-4bf9-8be3-c86cfe120afa\/download","text":"URN:NBN:fi:jyu-202006244614.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Kaaripuro, Henri Graphene-based devices for biological sensing FLIM fluorescence lifetime imaging microscopy lifetime Raman two photon oxidized FET field effect transistor Fysikaalinen kemia Physical Chemistry 4032 grafeeni grafeenioksidi spektroskopia proteiinit atomivoimamikroskopia nanorakenteet graphene graphene oxide spectroscopy proteins atomic force microscopy nanostructures
title Graphene-based devices for biological sensing
title_full Graphene-based devices for biological sensing
title_fullStr Graphene-based devices for biological sensing Graphene-based devices for biological sensing
title_full_unstemmed Graphene-based devices for biological sensing Graphene-based devices for biological sensing
title_short Graphene-based devices for biological sensing
title_sort graphene based devices for biological sensing
title_txtP Graphene-based devices for biological sensing
topic FLIM fluorescence lifetime imaging microscopy lifetime Raman two photon oxidized FET field effect transistor Fysikaalinen kemia Physical Chemistry 4032 grafeeni grafeenioksidi spektroskopia proteiinit atomivoimamikroskopia nanorakenteet graphene graphene oxide spectroscopy proteins atomic force microscopy nanostructures
topic_facet 4032 FET FLIM Fysikaalinen kemia Physical Chemistry Raman atomic force microscopy atomivoimamikroskopia field effect transistor fluorescence lifetime imaging microscopy grafeeni grafeenioksidi graphene graphene oxide lifetime nanorakenteet nanostructures proteiinit proteins spectroscopy spektroskopia two photon oxidized
url https://jyx.jyu.fi/handle/123456789/70424 http://www.urn.fi/URN:NBN:fi:jyu-202006244614
work_keys_str_mv AT kaaripurohenri graphenebaseddevicesforbiologicalsensing