Identifying and validating key challenges of Big Data-based decision-making a framework mapping out challenges from data to decisions

Big Datan rooli yritysten päätöksenteossa on muuttunut yhä tärkeämmäksi viime vuosikymmenen aikana. Syitä tähän ovat muun muassa huomattava kasvu datan määrässä maailmassa, sekä sen keräämisessä ja prosessoinnissa tehdyt harppaukset. Monet haasteet ovat nostaneet päätään yritysten pyrkiessä niittämä...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Palomäki, Santeri
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2020
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/70125
_version_ 1826225750431236096
author Palomäki, Santeri
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Palomäki, Santeri Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Palomäki, Santeri Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Palomäki, Santeri
datasource_str_mv jyx
description Big Datan rooli yritysten päätöksenteossa on muuttunut yhä tärkeämmäksi viime vuosikymmenen aikana. Syitä tähän ovat muun muassa huomattava kasvu datan määrässä maailmassa, sekä sen keräämisessä ja prosessoinnissa tehdyt harppaukset. Monet haasteet ovat nostaneet päätään yritysten pyrkiessä niittämään Big Datasta saatavia hyötyjä päätöksenteossaan, ja tämä on vaikeuttanut liiketoimintahyötyjen maksimointia. Nämä haasteet ovat liittyneet esimerkiksi dataan, prosessointiin ja johtamiseen. Big Datan muuttuessa tunnetummaksi ilmiöksi, on siihen kohdistuvan tutkimuksenkin määrä kasvanut sen mukana. Tämä on johtanut hajanaiseen näkemykseen Big Datan määritelmästä alan kirjallisuudessa. Tämän tutkielman tarkoitus on tarjota nykyaikainen ja kattava määritelmä Big Datalle, sekä perusteellinen kartoitus Big Data-pohjaiseen päätöksentekoon liittyvistä haasteista. Kirjallisuuskatsaus toteutettiin näiden tavoitteiden saavuttamiseksi. Kirjallisuuskatsauksen lisäksi järjestettiin teemahaastatteluja alan ammattilaisille vaihtelevilla taustoilla ja työhistorioilla. Haastattelujen pohjalta tunnistettiin 16 teemaa, joiden kautta validoitiin alan kirjallisuudessa löydettyjä haasteita. Tutkimuksen tuloksena on yksityiskohtainen kuvaus kaikista alan kirjallisuudessa merkittäviksi todetuista haasteista, jotka tulee huomioida Big Data-pohjaisessa päätöksenteossa, sekä ajankohtainen määritelmä itse Big Datalle. Lisäksi kehitettiin ja validoitiin uusi viitekehys, jolla visualisoidaan vielä yksityiskohtaisemmin tutkimuksessa tunnistettujen haasteiden välisiä suhteita. Tutkielman tuloksissa esitellään myös haastateltujen alan ammattilaisten näkemys nykypäivän oleellisimmista Big-Data-pohjaisen päätöksenteon haasteista yrityksille, mikä toimii tärkeänä käytännön implikaationa tämän tutkielman osalta. Big Data’s role in organizational decision-making has become increasingly important during the last decade. This is due to, inter alia, a massive increase in the amount of data in the world, as well as advancements made in gathering and processing techniques for data sets of this size. A plethora of challenges have been noted to present themselves as organizations are trying to reap the benefits of Big Data in decision-making, thus hindering the realized business benefits. These challenges are related to, for example, data, processing, and management. As Big Data has become more relevant as a phenomenon, research of it has also increased. This increased research has created a scattered view of Big Data definition in the literature of the field. This study seeks to provide a current, all-inclusive definition of BD and to comprehensively map out relevant challenges associated with Big Data-based decision-making. To achieve this, a literature review was conducted to identify key Big Data-based decision-making challenges found in the literature of the field. In addition to the literature review, a set of semi-structured interviews was conducted with industry professionals with varied backgrounds and professional experience. Based on the interviews, 16 different themes were identified and further used to validate the challenges found in the literature of the field. The result of this study is a detailed description of all relevant challenges that should be addressed in Big Data-based decision-making accompanied by a definitive explanation of BD itself. A new validated framework is also provided to further visualize the relations between different challenges identified in this study. Additionally, challenges found most relevant by the practitioners of the field are presented in the results of this study, which provides important practical implications for this thesis.
first_indexed 2020-06-22T20:05:01Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Kazan, Erol", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Palom\u00e4ki, Santeri", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-06-22T12:09:49Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-06-22T12:09:49Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/70125", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Big Datan rooli yritysten p\u00e4\u00e4t\u00f6ksenteossa on muuttunut yh\u00e4 t\u00e4rke\u00e4mm\u00e4ksi viime vuosikymmenen aikana. Syit\u00e4 t\u00e4h\u00e4n ovat muun muassa huomattava kasvu datan m\u00e4\u00e4r\u00e4ss\u00e4 maailmassa, sek\u00e4 sen ker\u00e4\u00e4misess\u00e4 ja prosessoinnissa tehdyt harppaukset. Monet haasteet ovat nostaneet p\u00e4\u00e4t\u00e4\u00e4n yritysten pyrkiess\u00e4 niitt\u00e4m\u00e4\u00e4n Big Datasta saatavia hy\u00f6tyj\u00e4 p\u00e4\u00e4t\u00f6ksenteossaan, ja t\u00e4m\u00e4 on vaikeuttanut liiketoimintahy\u00f6tyjen maksimointia. N\u00e4m\u00e4 haasteet ovat liittyneet esimerkiksi dataan, prosessointiin ja johtamiseen. Big Datan muuttuessa tunnetummaksi ilmi\u00f6ksi, on siihen kohdistuvan tutkimuksenkin m\u00e4\u00e4r\u00e4 kasvanut sen mukana. T\u00e4m\u00e4 on johtanut hajanaiseen n\u00e4kemykseen Big Datan m\u00e4\u00e4ritelm\u00e4st\u00e4 alan kirjallisuudessa. T\u00e4m\u00e4n tutkielman tarkoitus on tarjota nykyaikainen ja kattava m\u00e4\u00e4ritelm\u00e4 Big Datalle, sek\u00e4 perusteellinen kartoitus Big Data-pohjaiseen p\u00e4\u00e4t\u00f6ksentekoon liittyvist\u00e4 haasteista. Kirjallisuuskatsaus toteutettiin n\u00e4iden tavoitteiden saavuttamiseksi. Kirjallisuuskatsauksen lis\u00e4ksi j\u00e4rjestettiin teemahaastatteluja alan ammattilaisille vaihtelevilla taustoilla ja ty\u00f6historioilla. Haastattelujen pohjalta tunnistettiin 16 teemaa, joiden kautta validoitiin alan kirjallisuudessa l\u00f6ydettyj\u00e4 haasteita. Tutkimuksen tuloksena on yksityiskohtainen kuvaus kaikista alan kirjallisuudessa merkitt\u00e4viksi todetuista haasteista, jotka tulee huomioida Big Data-pohjaisessa p\u00e4\u00e4t\u00f6ksenteossa, sek\u00e4 ajankohtainen m\u00e4\u00e4ritelm\u00e4 itse Big Datalle. Lis\u00e4ksi kehitettiin ja validoitiin uusi viitekehys, jolla visualisoidaan viel\u00e4 yksityiskohtaisemmin tutkimuksessa tunnistettujen haasteiden v\u00e4lisi\u00e4 suhteita. Tutkielman tuloksissa esitell\u00e4\u00e4n my\u00f6s haastateltujen alan ammattilaisten n\u00e4kemys nykyp\u00e4iv\u00e4n oleellisimmista Big-Data-pohjaisen p\u00e4\u00e4t\u00f6ksenteon haasteista yrityksille, mik\u00e4 toimii t\u00e4rke\u00e4n\u00e4 k\u00e4yt\u00e4nn\u00f6n implikaationa t\u00e4m\u00e4n tutkielman osalta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Big Data\u2019s role in organizational decision-making has become increasingly important during the last decade. This is due to, inter alia, a massive increase in the amount of data in the world, as well as advancements made in gathering and processing techniques for data sets of this size. A plethora of challenges have been noted to present themselves as organizations are trying to reap the benefits of Big Data in decision-making, thus hindering the realized business benefits. These challenges are related to, for example, data, processing, and management. As Big Data has become more relevant as a phenomenon, research of it has also increased. This increased research has created a scattered view of Big Data definition in the literature of the field. This study seeks to provide a current, all-inclusive definition of BD and to comprehensively map out relevant challenges associated with Big Data-based decision-making. To achieve this, a literature review was conducted to identify key Big Data-based decision-making challenges found in the literature of the field. In addition to the literature review, a set of semi-structured interviews was conducted with industry professionals with varied backgrounds and professional experience. Based on the interviews, 16 different themes were identified and further used to validate the challenges found in the literature of the field. The result of this study is a detailed description of all relevant challenges that should be addressed in Big Data-based decision-making accompanied by a definitive explanation of BD itself. A new validated framework is also provided to further visualize the relations between different challenges identified in this study. Additionally, challenges found most relevant by the practitioners of the field are presented in the results of this study, which provides important practical implications for this thesis.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-06-22T12:09:49Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-06-22T12:09:49Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "70", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "big data analytics", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "data-driven decision making", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202006224316", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "p\u00e4\u00e4t\u00f6ksenteko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "decision making", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_70125
language eng
last_indexed 2025-02-18T10:54:33Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2db058c4-079d-48e8-ba09-18e1a35a02f2\/download","text":"URN:NBN:fi:jyu-202006224316.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Palomäki, Santeri Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions big data analytics data-driven decision making Tietojärjestelmätiede Information Systems Science 601 big data päätöksenteko decision making
title Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions
title_full Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions
title_fullStr Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions
title_full_unstemmed Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions
title_short Identifying and validating key challenges of Big Data-based decision-making
title_sort identifying and validating key challenges of big data based decision making a framework mapping out challenges from data to decisions
title_sub a framework mapping out challenges from data to decisions
title_txtP Identifying and validating key challenges of Big Data-based decision-making : a framework mapping out challenges from data to decisions
topic big data analytics data-driven decision making Tietojärjestelmätiede Information Systems Science 601 big data päätöksenteko decision making
topic_facet 601 Information Systems Science Tietojärjestelmätiede big data big data analytics data-driven decision making decision making päätöksenteko
url https://jyx.jyu.fi/handle/123456789/70125 http://www.urn.fi/URN:NBN:fi:jyu-202006224316
work_keys_str_mv AT palomäkisanteri identifyingandvalidatingkeychallengesofbigdatabaseddecisionmakingaframeworkmappi