Electrochemical methods for graphene-based materials for biosensors

Tämän opinnäytetyön kirjallisuuskatsaus käy läpi tyypillisimmät grafeeniin pohjautuvat materiaalit, biosensoreihin liittyvät olennaiset perusteet sähkökemiasta, niihin soveltuvat sähkökemian metodit ja lopuksi erilaisia sovelluksia, jotka käyttävät näitä metodeita biosensoreissa. Kokeellisen osion t...

Full description

Bibliographic Details
Main Author: Lampinen, Aku
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Kemian laitos, Department of Chemistry, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/69293
_version_ 1826225766390562816
author Lampinen, Aku
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_facet Lampinen, Aku Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä Lampinen, Aku Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry Jyväskylän yliopisto University of Jyväskylä
author_sort Lampinen, Aku
datasource_str_mv jyx
description Tämän opinnäytetyön kirjallisuuskatsaus käy läpi tyypillisimmät grafeeniin pohjautuvat materiaalit, biosensoreihin liittyvät olennaiset perusteet sähkökemiasta, niihin soveltuvat sähkökemian metodit ja lopuksi erilaisia sovelluksia, jotka käyttävät näitä metodeita biosensoreissa. Kokeellisen osion tavoitteena oli karakterisoida EGNITE, joka on uusi grafeeniin pohjautuva materiaali. Tarkoituksena oli löytää sähkökemiallinen metodi, jonka avulla tätä uutta materiaalia voitaisiin käyttää pH-mittauksissa. EGNITE osoittautui pH-herkäksi materiaaliksi, mutta selkeän ja luotettavan metodin löytämisessä oli haasteita. EGNITE:n karakterisointi suoritettiin käyttämällä Raman spektroskopiaa, pyyhkäisy-elektronimikroskopiaa (SEM), röntgenfotonispektroskopiaa (XPS) ja syklistä voltametriaa (CV). Niiden tulokset osoittivat, että EGNITE on hyvin kapasitiivinen materiaali (41,9 – 52,2 mF/cm2) verrattaessa yksikerroksiseen grafeeniin (21 µF/cm2). Tämän lisäksi osoitettiin, että käyttämällä autoklaavia, materiaalia saatiin onnistuneesti pelkistettyä parantaen sen johtokykyä, joka myös kasvatti sen rakenteessa esiintyvien defektien konsentraatiota. Sähkökemialliset metodit, joita käytettiin pH-herkkyyden tutkimisessa, olivat CV, jännitekontrolloitu sähkökemiallinen impedanssispektroskopia (PEIS), kronoamperometria (CA) ja kronometrinen jännitekontrolloitu sähkökemiallinen impedanssispektroskopia (PEISW). Saadut tulokset käyttäen PEIS-menetelmää osoittautuivat kaikkein lupaavimmiksi. Niistä mittauksista saatuun dataan sovitettiin onnistuneesti ekvivalenttipiiri pH-herkkyyden tutkimiseksi. Tämän opinnäytetyön tuloksista huolimatta lisää työtä materiaalin parissa tulee tehdä, jotta toimiva ja toisinnettavissa oleva sähkökemiallinen metodi pH:n mittaamiseen löytyy. Syynä tähän on ongelmat toisinnettavuudessa ja näytteiden välisissä eroissa. The literature review of this thesis goes through the most common types of graphene-based materials, essential fundamentals of electrochemistry required for biosensing, discusses the possible electrochemical methods and finally gives examples of applications taking advantage of said methods in different types of biosensing. The goal of the experimental work presented here was to characterize a novel graphene-based material called EGNITE and find an electrochemical method for measuring pH using the material as an electrode. The material was found to be pH sensitive but finding a clear and reliable method for pH sensing was challenging. The material was characterized using Raman spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and cyclic voltammetry. The results show very high capacitive properties (41.9 to 52.2 mF/cm2) for EGNITE in comparison to plain single-layer graphene (21 µF/cm2). They also show that an autoclaving treatment was successfully used to reduce EGNITE to increase its conductivity. However, this also increased its defect concentration. Electrochemical methods explored for the pH measurements were cyclic voltammetry, potentio electrochemical impedance spectroscopy (PEIS), chronoamperometry and PEIS-wait. PEIS measurements showed the most promise and equivalent circuit fitting was successfully used to inspect the material’s pH sensitivity. However, further work has to be done to find a reliable and reproducible pH measuring method using EGNITE. This is because of the poor reproducibility of the measurements and sample to sample variation.
first_indexed 2020-05-28T20:00:48Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Pettersson, Mika", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Garrido, Jose Antonio", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Lampinen, Aku", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-05-28T11:56:48Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-05-28T11:56:48Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/69293", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4m\u00e4n opinn\u00e4ytety\u00f6n kirjallisuuskatsaus k\u00e4y l\u00e4pi tyypillisimm\u00e4t grafeeniin pohjautuvat materiaalit, biosensoreihin liittyv\u00e4t olennaiset perusteet s\u00e4hk\u00f6kemiasta, niihin soveltuvat s\u00e4hk\u00f6kemian metodit ja lopuksi erilaisia sovelluksia, jotka k\u00e4ytt\u00e4v\u00e4t n\u00e4it\u00e4 metodeita biosensoreissa. Kokeellisen osion tavoitteena oli karakterisoida EGNITE, joka on uusi grafeeniin pohjautuva materiaali. Tarkoituksena oli l\u00f6yt\u00e4\u00e4 s\u00e4hk\u00f6kemiallinen metodi, jonka avulla t\u00e4t\u00e4 uutta materiaalia voitaisiin k\u00e4ytt\u00e4\u00e4 pH-mittauksissa. EGNITE osoittautui pH-herk\u00e4ksi materiaaliksi, mutta selke\u00e4n ja luotettavan metodin l\u00f6yt\u00e4misess\u00e4 oli haasteita. EGNITE:n karakterisointi suoritettiin k\u00e4ytt\u00e4m\u00e4ll\u00e4 Raman spektroskopiaa, pyyhk\u00e4isy-elektronimikroskopiaa (SEM), r\u00f6ntgenfotonispektroskopiaa (XPS) ja syklist\u00e4 voltametriaa (CV). Niiden tulokset osoittivat, ett\u00e4 EGNITE on hyvin kapasitiivinen materiaali (41,9 \u2013 52,2 mF/cm2) verrattaessa yksikerroksiseen grafeeniin (21 \u00b5F/cm2). T\u00e4m\u00e4n lis\u00e4ksi osoitettiin, ett\u00e4 k\u00e4ytt\u00e4m\u00e4ll\u00e4 autoklaavia, materiaalia saatiin onnistuneesti pelkistetty\u00e4 parantaen sen johtokyky\u00e4, joka my\u00f6s kasvatti sen rakenteessa esiintyvien defektien konsentraatiota. S\u00e4hk\u00f6kemialliset metodit, joita k\u00e4ytettiin pH-herkkyyden tutkimisessa, olivat CV, j\u00e4nnitekontrolloitu s\u00e4hk\u00f6kemiallinen impedanssispektroskopia (PEIS), kronoamperometria (CA) ja kronometrinen j\u00e4nnitekontrolloitu s\u00e4hk\u00f6kemiallinen impedanssispektroskopia (PEISW). Saadut tulokset k\u00e4ytt\u00e4en PEIS-menetelm\u00e4\u00e4 osoittautuivat kaikkein lupaavimmiksi. Niist\u00e4 mittauksista saatuun dataan sovitettiin onnistuneesti ekvivalenttipiiri pH-herkkyyden tutkimiseksi. T\u00e4m\u00e4n opinn\u00e4ytety\u00f6n tuloksista huolimatta lis\u00e4\u00e4 ty\u00f6t\u00e4 materiaalin parissa tulee tehd\u00e4, jotta toimiva ja toisinnettavissa oleva s\u00e4hk\u00f6kemiallinen metodi pH:n mittaamiseen l\u00f6ytyy. Syyn\u00e4 t\u00e4h\u00e4n on ongelmat toisinnettavuudessa ja n\u00e4ytteiden v\u00e4lisiss\u00e4 eroissa.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The literature review of this thesis goes through the most common types of graphene-based materials, essential fundamentals of electrochemistry required for biosensing, discusses the possible electrochemical methods and finally gives examples of applications taking advantage of said methods in different types of biosensing. The goal of the experimental work presented here was to characterize a novel graphene-based material called EGNITE and find an electrochemical method for measuring pH using the material as an electrode. The material was found to be pH sensitive but finding a clear and reliable method for pH sensing was challenging. The material was characterized using Raman spectroscopy, scanning electron microscopy, \nX-ray photoelectron spectroscopy and cyclic voltammetry. The results show very high capacitive properties (41.9 to 52.2 mF/cm2) for EGNITE in comparison to plain single-layer graphene (21 \u00b5F/cm2). They also show that an autoclaving treatment was successfully used to reduce EGNITE to increase its conductivity. However, this also increased its defect concentration. Electrochemical methods explored for the pH measurements were cyclic voltammetry, potentio electrochemical impedance spectroscopy (PEIS), chronoamperometry and PEIS-wait. PEIS measurements showed the most promise and equivalent circuit fitting was successfully used to inspect the material\u2019s pH sensitivity. However, further work has to be done to find a reliable and reproducible pH measuring method using EGNITE. This is because of the poor reproducibility of the measurements and sample to sample variation.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-05-28T11:56:48Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-05-28T11:56:48Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "116", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "EGNITE", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Electrochemical methods for graphene-based materials for biosensors", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202005283550", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Kemian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Chemistry", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysikaalinen kemia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physical Chemistry", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4032", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeeni", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "s\u00e4hk\u00f6kemia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "mittausmenetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "elektrodit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biosensorit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "grafeenioksidi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "pH", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "graphene", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "electrochemistry", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "measuring methods", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "electrodes", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biosensors", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "graphene oxide", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "pH", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_69293
language eng
last_indexed 2025-02-18T10:55:25Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/a720c59e-c367-43d3-9c32-a0b729dfb298\/download","text":"URN:NBN:fi:jyu-202005283550.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Lampinen, Aku Electrochemical methods for graphene-based materials for biosensors EGNITE Fysikaalinen kemia Physical Chemistry 4032 grafeeni sähkökemia mittausmenetelmät elektrodit biosensorit grafeenioksidi pH graphene electrochemistry measuring methods electrodes biosensors graphene oxide
title Electrochemical methods for graphene-based materials for biosensors
title_full Electrochemical methods for graphene-based materials for biosensors
title_fullStr Electrochemical methods for graphene-based materials for biosensors Electrochemical methods for graphene-based materials for biosensors
title_full_unstemmed Electrochemical methods for graphene-based materials for biosensors Electrochemical methods for graphene-based materials for biosensors
title_short Electrochemical methods for graphene-based materials for biosensors
title_sort electrochemical methods for graphene based materials for biosensors
title_txtP Electrochemical methods for graphene-based materials for biosensors
topic EGNITE Fysikaalinen kemia Physical Chemistry 4032 grafeeni sähkökemia mittausmenetelmät elektrodit biosensorit grafeenioksidi pH graphene electrochemistry measuring methods electrodes biosensors graphene oxide
topic_facet 4032 EGNITE Fysikaalinen kemia Physical Chemistry biosensorit biosensors electrochemistry electrodes elektrodit grafeeni grafeenioksidi graphene graphene oxide measuring methods mittausmenetelmät pH sähkökemia
url https://jyx.jyu.fi/handle/123456789/69293 http://www.urn.fi/URN:NBN:fi:jyu-202005283550
work_keys_str_mv AT lampinenaku electrochemicalmethodsforgraphenebasedmaterialsforbiosensors