State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos

As the current GDPR law in the EU prohibits unnecessary use of CCTV cameras in public places, and privacy concerns of smart CCTV cameras have been raised, CCTV cameras cannot be regarded as just easy tools to help secure your assets. Smart technologies such as facial recognition have reached CCTV ca...

Full description

Bibliographic Details
Main Author: Turtiainen, Hannu-Tapani
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/69177
_version_ 1826225750416556032
author Turtiainen, Hannu-Tapani
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Turtiainen, Hannu-Tapani Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Turtiainen, Hannu-Tapani Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Turtiainen, Hannu-Tapani
datasource_str_mv jyx
description As the current GDPR law in the EU prohibits unnecessary use of CCTV cameras in public places, and privacy concerns of smart CCTV cameras have been raised, CCTV cameras cannot be regarded as just easy tools to help secure your assets. Smart technologies such as facial recognition have reached CCTV cameras and the amount of data gathered from them is expanding rapidly. This thesis explores how to use state-of-the-art object detection architectures and frameworks to create models to detect CCTV cameras from images (e.g., street view) and video. A literature review was performed to establish a fundamental understanding of object detector algorithms. The metrics from Microsoft Common Objects in Context were used to evaluate the detectors as state-of-the-art since most recent architectures have been tested with it. The selection process also took into account the framework around the detector as the tools in use are essential for the future refinement and adoption of the model. Three detectors were identified as prime candidates; CenterMask, ATSS, and TridentNet. This thesis developed a set of state-of-the-art detectors for 'CCTV-camera' objects achieving over 90% mAP@0.5 and with further possibilities, improvements, and testing datasets being disclosed. This thesis is a part of a three-way project collaboration with two other M.Sc. theses being written by Tuomo Lahtinen and Lauri Sintonen. The intention is to create a toolset to improve the detection model further and to use it for mapping CCTV cameras from street view images and create safety-centric routing and navigational suggestions.
first_indexed 2020-05-25T20:00:44Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Costin, Andrei", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Turtiainen, Hannu-Tapani", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-05-25T08:19:12Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-05-25T08:19:12Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/69177", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "As the current GDPR law in the EU prohibits unnecessary use of CCTV cameras in public places, and privacy concerns of smart CCTV cameras have been raised, CCTV cameras cannot be regarded as just easy tools to help secure your assets. Smart technologies such as facial recognition have reached CCTV cameras and the amount of data gathered from them is expanding rapidly. This thesis explores how to use state-of-the-art object detection architectures and frameworks to create models to detect CCTV cameras from images (e.g., street view) and video. A literature review was performed to establish a fundamental understanding of object detector algorithms. The metrics from Microsoft Common Objects in Context were used to evaluate the detectors as state-of-the-art since most recent architectures have been tested with it. The selection process also took into account the framework around the detector as the tools in use are essential for the future refinement and adoption of the model. Three detectors were identified as prime candidates; CenterMask, ATSS, and TridentNet. This thesis developed a set of state-of-the-art detectors for 'CCTV-camera' objects achieving over 90% mAP@0.5 and with further possibilities, improvements, and testing datasets being disclosed. This thesis is a part of a three-way project collaboration with two other M.Sc. theses being written by Tuomo Lahtinen and Lauri Sintonen. The intention is to create a toolset to improve the detection model further and to use it for mapping CCTV cameras from street view images and create safety-centric routing and navigational suggestions.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-05-25T08:19:12Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-05-25T08:19:12Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "95", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "CCTV cameras", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "object detection", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "state-of-the-art", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "convolutional neural networks", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202005253430", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietojenk\u00e4sittelytiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Computer Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "konen\u00e4k\u00f6", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kameravalvonta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "computer vision", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "closed-circuit television", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_69177
language eng
last_indexed 2025-02-18T10:54:05Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/f2408472-5ae2-41db-97eb-8929cd7b9fb2\/download","text":"URN:NBN:fi:jyu-202005253430.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Turtiainen, Hannu-Tapani State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos CCTV cameras object detection state-of-the-art convolutional neural networks Tietojenkäsittelytiede Computer Science 601 konenäkö kameravalvonta koneoppiminen computer vision closed-circuit television machine learning
title State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
title_full State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
title_fullStr State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
title_full_unstemmed State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
title_short State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
title_sort state of the art object detection model for detecting cctv and video surveillance cameras from images and videos
title_txtP State-of-the-art object detection model for detecting CCTV and video surveillance cameras from images and videos
topic CCTV cameras object detection state-of-the-art convolutional neural networks Tietojenkäsittelytiede Computer Science 601 konenäkö kameravalvonta koneoppiminen computer vision closed-circuit television machine learning
topic_facet 601 CCTV cameras Computer Science Tietojenkäsittelytiede closed-circuit television computer vision convolutional neural networks kameravalvonta konenäkö koneoppiminen machine learning object detection state-of-the-art
url https://jyx.jyu.fi/handle/123456789/69177 http://www.urn.fi/URN:NBN:fi:jyu-202005253430
work_keys_str_mv AT turtiainenhannutapani stateoftheartobjectdetectionmodelfordetectingcctvandvideosurveillancecamer