Evolutionaariset monitavoiteoptimointialgoritmit

Tässä tutkielmassa selvitetään evolutionaaristen monitavoiteoptimointialgoritmien (MOEA) toimintaa. Tutkielmassa käydään evolutionaaristen menetelmien lisäksi läpi monitavoiteoptimointia. MOEA:ia kuvaillaan yleisellä tasolla, ja esitellään joitain tunnettuja algoritmeja pyrkien antamaan mahdollisimm...

Full description

Bibliographic Details
Main Author: Reinikainen, Juha
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/69070
_version_ 1826225795570335744
author Reinikainen, Juha
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Reinikainen, Juha Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Reinikainen, Juha Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Reinikainen, Juha
datasource_str_mv jyx
description Tässä tutkielmassa selvitetään evolutionaaristen monitavoiteoptimointialgoritmien (MOEA) toimintaa. Tutkielmassa käydään evolutionaaristen menetelmien lisäksi läpi monitavoiteoptimointia. MOEA:ia kuvaillaan yleisellä tasolla, ja esitellään joitain tunnettuja algoritmeja pyrkien antamaan mahdollisimman kattavan kokonaisukuvan algoritmeista. Tutkielmassa vertaillaan myös algoritmeja toisiinsa ja tutkitaan niiden tehokkuutta. Goal of this thesis is to study evolutionary multiobjective optimization algorithms (MOEA). Multiobjective optimization is also presented. MOEAs are examined on abstract level and known algorithms are presented to give a comprehensive view of the algorithms. Algoritms are also compared to each other and their efficiency is explored.
first_indexed 2020-05-19T20:08:44Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Saksa, Tytti", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Reinikainen, Juha", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-05-19T12:13:30Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-05-19T12:13:30Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/69070", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 tutkielmassa selvitet\u00e4\u00e4n evolutionaaristen monitavoiteoptimointialgoritmien (MOEA) toimintaa. Tutkielmassa k\u00e4yd\u00e4\u00e4n evolutionaaristen menetelmien lis\u00e4ksi l\u00e4pi monitavoiteoptimointia. MOEA:ia kuvaillaan yleisell\u00e4 tasolla, ja esitell\u00e4\u00e4n joitain tunnettuja algoritmeja pyrkien antamaan mahdollisimman kattavan kokonaisukuvan algoritmeista. Tutkielmassa vertaillaan my\u00f6s algoritmeja toisiinsa ja tutkitaan niiden tehokkuutta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Goal of this thesis is to study evolutionary multiobjective optimization algorithms (MOEA). Multiobjective optimization is also presented. MOEAs are examined on abstract level and known algorithms are presented to give a comprehensive view of the algorithms. Algoritms are also compared to each other and their efficiency is explored.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-05-19T12:13:30Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-05-19T12:13:30Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "26", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Evolutionaariset monitavoiteoptimointialgoritmit", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202005193323", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "p\u00e4\u00e4t\u00f6ksenteko", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimaalisuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "monitavoiteoptimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "geneettinen muuntelu", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_69070
language fin
last_indexed 2025-02-18T10:54:23Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/19547a56-3a22-41a0-a587-cb48b78f2263\/download","text":"URN:NBN:fi:jyu-202005193323.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Reinikainen, Juha Evolutionaariset monitavoiteoptimointialgoritmit Tietotekniikka Mathematical Information Technology 602 algoritmit päätöksenteko optimaalisuus optimointi monitavoiteoptimointi geneettinen muuntelu
title Evolutionaariset monitavoiteoptimointialgoritmit
title_full Evolutionaariset monitavoiteoptimointialgoritmit
title_fullStr Evolutionaariset monitavoiteoptimointialgoritmit Evolutionaariset monitavoiteoptimointialgoritmit
title_full_unstemmed Evolutionaariset monitavoiteoptimointialgoritmit Evolutionaariset monitavoiteoptimointialgoritmit
title_short Evolutionaariset monitavoiteoptimointialgoritmit
title_sort evolutionaariset monitavoiteoptimointialgoritmit
title_txtP Evolutionaariset monitavoiteoptimointialgoritmit
topic Tietotekniikka Mathematical Information Technology 602 algoritmit päätöksenteko optimaalisuus optimointi monitavoiteoptimointi geneettinen muuntelu
topic_facet 602 Mathematical Information Technology Tietotekniikka algoritmit geneettinen muuntelu monitavoiteoptimointi optimaalisuus optimointi päätöksenteko
url https://jyx.jyu.fi/handle/123456789/69070 http://www.urn.fi/URN:NBN:fi:jyu-202005193323
work_keys_str_mv AT reinikainenjuha evolutionaarisetmonitavoiteoptimointialgoritmit