Työtehtävän tunnistaminen ajoneuvodatasta

Esineiden Internet mahdollistaa uudenlaisen, tehostetun tiedonkeruun ja sen analytiikan sekä isoista että pienistä järjestelmistä. Tämä avaa uusia liiketoimintamahdollisuuksia. Työssä tutkitaan, miten työtehtäviä voidaan klassifioida traktorin reaaliaikaisesta ajodatasta. Keskeinen haaste on relevan...

Full description

Bibliographic Details
Main Author: Uusitupa, Janne
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/68980
_version_ 1826225703137312768
author Uusitupa, Janne
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Uusitupa, Janne Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Uusitupa, Janne Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Uusitupa, Janne
datasource_str_mv jyx
description Esineiden Internet mahdollistaa uudenlaisen, tehostetun tiedonkeruun ja sen analytiikan sekä isoista että pienistä järjestelmistä. Tämä avaa uusia liiketoimintamahdollisuuksia. Työssä tutkitaan, miten työtehtäviä voidaan klassifioida traktorin reaaliaikaisesta ajodatasta. Keskeinen haaste on relevantin tiedon valinta ja siirto traktorista. Tutkielmassa käsitellään klassifioinnin perusalgoritmeja sillä tarkkuudella, että niiden perusajatus tulee ilmi. Tämä auttaa parhaan algoritmin valinnassa sulautettuun ympäristöön, jossa resurssit ovat vähäiset. Tuloksena on kolmen eri työtehtävän tehokas erottelu. Internet of Things allows a new, enhanced data analytics from both small and large systems. This brings new business possibilities. The objective of this study is to build a model that classifies work tasks efficiently from real time data. The central problem is the selection and transmission of relevant data from the vehicle. Some of the most important classification algorithms are covered in the basics to get an overview of what is suitable for the task. Appropriate algorithm in an embedded system with minimal resources is desirable. As a result, an efficient classification between three different work tasks is found.
first_indexed 2020-05-14T20:01:06Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "H\u00e4m\u00e4l\u00e4inen, Timo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Uusitupa, Janne", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-05-14T06:33:16Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-05-14T06:33:16Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/68980", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Esineiden Internet mahdollistaa uudenlaisen, tehostetun tiedonkeruun ja sen analytiikan sek\u00e4 isoista ett\u00e4 pienist\u00e4 j\u00e4rjestelmist\u00e4. T\u00e4m\u00e4 avaa uusia liiketoimintamahdollisuuksia. Ty\u00f6ss\u00e4 tutkitaan, miten ty\u00f6teht\u00e4vi\u00e4 voidaan klassifioida traktorin reaaliaikaisesta ajodatasta. Keskeinen haaste on relevantin tiedon valinta ja siirto traktorista. Tutkielmassa k\u00e4sitell\u00e4\u00e4n klassifioinnin perusalgoritmeja sill\u00e4 tarkkuudella, ett\u00e4 niiden perusajatus tulee ilmi. T\u00e4m\u00e4 auttaa parhaan algoritmin valinnassa sulautettuun ymp\u00e4rist\u00f6\u00f6n, jossa resurssit ovat v\u00e4h\u00e4iset. Tuloksena on kolmen eri ty\u00f6teht\u00e4v\u00e4n tehokas erottelu.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Internet of Things allows a new, enhanced data analytics from both small and large systems. This brings new business possibilities. The objective of this study is to build a model that classifies work tasks efficiently from real time data. The central problem is the selection and transmission of relevant data from the vehicle. Some of the most important classification algorithms are covered in the basics to get an overview of what is suitable for the task. Appropriate algorithm in an embedded system with minimal resources is desirable. As a result, an efficient classification between three different work tasks is\nfound.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-05-14T06:33:16Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-05-14T06:33:16Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "64", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "Ty\u00f6teht\u00e4v\u00e4n tunnistaminen ajoneuvodatasta", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202005143186", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "0\u20ac", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "business", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tilastomenetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ajoneuvot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "analyysi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonlouhinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "digitalisaatio", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_68980
language fin
last_indexed 2025-02-18T10:55:16Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2ffeab9a-67aa-4b26-90fa-fe042afb3d25\/download","text":"URN:NBN:fi:jyu-202005143186.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Uusitupa, Janne Työtehtävän tunnistaminen ajoneuvodatasta Tietotekniikka Mathematical Information Technology 602 data algoritmit koneoppiminen tilastomenetelmät ajoneuvot analyysi tiedonlouhinta digitalisaatio
title Työtehtävän tunnistaminen ajoneuvodatasta
title_full Työtehtävän tunnistaminen ajoneuvodatasta
title_fullStr Työtehtävän tunnistaminen ajoneuvodatasta Työtehtävän tunnistaminen ajoneuvodatasta
title_full_unstemmed Työtehtävän tunnistaminen ajoneuvodatasta Työtehtävän tunnistaminen ajoneuvodatasta
title_short Työtehtävän tunnistaminen ajoneuvodatasta
title_sort työtehtävän tunnistaminen ajoneuvodatasta
title_txtP Työtehtävän tunnistaminen ajoneuvodatasta
topic Tietotekniikka Mathematical Information Technology 602 data algoritmit koneoppiminen tilastomenetelmät ajoneuvot analyysi tiedonlouhinta digitalisaatio
topic_facet 602 Mathematical Information Technology Tietotekniikka ajoneuvot algoritmit analyysi data digitalisaatio koneoppiminen tiedonlouhinta tilastomenetelmät
url https://jyx.jyu.fi/handle/123456789/68980 http://www.urn.fi/URN:NBN:fi:jyu-202005143186
work_keys_str_mv AT uusitupajanne työtehtäväntunnistaminenajoneuvodatasta