Automated analysis of musculoskeletal ultrasound images using deep learning

Ultraääntä käytetään paljon tuki- ja liikuntaelimistön kudosten kuvaamiseen, etuina ollen matalat kustannukset, siirrettävyys sekä ei-invasiivisuus. Ultraäänikuvien analysointi vaatii edelleen kehitystä. Viime aikoihin saakka kaikki analyysit on tehty manuaalisesti, mikä on hyvin subjektiivista ja a...

Full description

Bibliographic Details
Main Author: Cronin, Neil
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2020
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/68521
_version_ 1828193069392986112
author Cronin, Neil
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Cronin, Neil Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Cronin, Neil Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Cronin, Neil
datasource_str_mv jyx
description Ultraääntä käytetään paljon tuki- ja liikuntaelimistön kudosten kuvaamiseen, etuina ollen matalat kustannukset, siirrettävyys sekä ei-invasiivisuus. Ultraäänikuvien analysointi vaatii edelleen kehitystä. Viime aikoihin saakka kaikki analyysit on tehty manuaalisesti, mikä on hyvin subjektiivista ja aikaa vievää. Tällä hetkellä on olemassa muutamia tähän tarkoitukseen suunniteltu-ja avoimen lähdekoodin menetelmiä. Tämänhetkiset lähestymistavat perustuvat yleensä sääntöpohjaisiin analyyseihin. Useat niistä tekevät virheitä, jos analysoitavissa kuvissa on suuria poikkeamia menetelmän kehityksessä käytettyihin kuviin verrattuna. Viime vuosina syväoppimisen käyttäminen lääketieteellisissä kuva-analyyseissä on tuottanut erinomaisia segmentointituloksia eri kuvantamistavoilla, mutta useimpia niistä ei ole vielä sovellettu laajemmin tuki- ja liikuntaelimistön ultraäänikuviin. Tässä tutkielmassa esit-telen syväoppimiseen perustuvan automatisoidun menetelmän, joka laskee lihasten rakenteeseen liittyviä parametreja ultraäänikuvista ja videoista. Tämä menetelmä perustuu U-net arkkitehtuuriin, ja mallit on opetettu käsin merkityillä lihassolukimppujen ja aponeuroosien kuvilla. Näiden opetettujen mallien avulla tehtiin pikselitasoinen semanttinen segmentointi uusille kuville luokittelemalla jokainen pikseli yhteen kolmesta mahdollisesta luokasta (lihassolukimppu, aponeuroosi, muu). Tuloksia verrattiin kahden eri tutkijan tekemiin manuaalisiin analyyseihin sekä olemassa olevaan puoliautomaattiseen menetelmään. Kehitetty menetelmä suoriutui yleisesti hyvin verrattuna manuaaliseen ja puoliautomaattiseen analyysiin, ja toimi vakaasti eri ultraäänilaitteilla ja asetuksilla otetuilla kuvilla. Menetelmä kykeni myös havaitsemaan monia lihassolukimppuja samassa kuvassa. Esitelty lähestymistapa tarjoaa objektiivisen, aikaa säästävän menetelmän ultraäänikuvien segmentointiin ilman käyttäjän syötettä. Menetelmä ja kaikki merkitty data ovat saatavilla avoimen lähdekoodin lisenssillä, mahdollistaen toisten hyödyntää ja laajentaa tätä työtä. Ultrasound is widely used to image musculoskeletal tissues, and offers many benefits including low cost, portability, and non-invasiveness. However, the analysis of ultrasound images remains an area in need of development. Until very recently, all analyses were performed manually, which is very subjective and time-consuming. There are currently very few open source methods designed for this purpose. Current approaches also tend to rely on rules-based analyses, and such methods tend to fail if images exhibit large deviations from those that were used to develop the method. In recent years, deep learning approaches to medical image analysis have been shown to yield excellent segmentation results on various imaging modalities, but such approaches have not yet been broadly applied to musculoskeletal ultrasound images. In this thesis I present a deep learning-based automated method that computes muscle architectural parameters from ultrasound images and videos. The method is based on the U-net architecture, and models were trained using hand-labelled images of muscle fascicles and aponeuroses. These trained models were then used to perform pixel-wise semantic segmentation of new images, classifying each pixel as one of three possible classes (fascicle, aponeurosis, other). The results were compared to manual analysis performed by two independent researchers, as well as to an existing semi-automated method. In general, the method performed very favourably when compared to manual and semi-automated analysis, and was robust to images from different muscles and those obtained with different ultrasound systems and settings. The method is also able to detect multiple muscle fascicles in a given image. The approach presented here offers an objective, time-efficient method of segmenting ultrasound images that does not require any user input. The method and all labelled training data are available under an open source license, allowing others to use and extend this work.
first_indexed 2020-04-15T20:03:08Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Terziyan, Vagan", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Cronin, Neil", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-04-15T05:08:55Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-04-15T05:08:55Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/68521", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Ultra\u00e4\u00e4nt\u00e4 k\u00e4ytet\u00e4\u00e4n paljon tuki- ja liikuntaelimist\u00f6n kudosten kuvaamiseen, etuina ollen matalat kustannukset, siirrett\u00e4vyys sek\u00e4 ei-invasiivisuus. Ultra\u00e4\u00e4nikuvien analysointi vaatii edelleen kehityst\u00e4. Viime aikoihin saakka kaikki analyysit on tehty manuaalisesti, mik\u00e4 on hyvin subjektiivista ja aikaa viev\u00e4\u00e4. T\u00e4ll\u00e4 hetkell\u00e4 on olemassa muutamia t\u00e4h\u00e4n tarkoitukseen suunniteltu-ja avoimen l\u00e4hdekoodin menetelmi\u00e4. T\u00e4m\u00e4nhetkiset l\u00e4hestymistavat perustuvat yleens\u00e4 s\u00e4\u00e4nt\u00f6pohjaisiin analyyseihin. Useat niist\u00e4 tekev\u00e4t virheit\u00e4, jos analysoitavissa kuvissa on suuria poikkeamia menetelm\u00e4n kehityksess\u00e4 k\u00e4ytettyihin kuviin verrattuna. Viime vuosina syv\u00e4oppimisen k\u00e4ytt\u00e4minen l\u00e4\u00e4ketieteellisiss\u00e4 kuva-analyyseiss\u00e4 on tuottanut erinomaisia segmentointituloksia eri kuvantamistavoilla, mutta useimpia niist\u00e4 ei ole viel\u00e4 sovellettu laajemmin tuki- ja liikuntaelimist\u00f6n ultra\u00e4\u00e4nikuviin. T\u00e4ss\u00e4 tutkielmassa esit-telen syv\u00e4oppimiseen perustuvan automatisoidun menetelm\u00e4n, joka laskee lihasten rakenteeseen liittyvi\u00e4 parametreja ultra\u00e4\u00e4nikuvista ja videoista. T\u00e4m\u00e4 menetelm\u00e4 perustuu U-net arkkitehtuuriin, ja mallit on opetettu k\u00e4sin merkityill\u00e4 lihassolukimppujen ja aponeuroosien kuvilla. N\u00e4iden opetettujen mallien avulla tehtiin pikselitasoinen semanttinen segmentointi uusille kuville luokittelemalla jokainen pikseli yhteen kolmesta mahdollisesta luokasta (lihassolukimppu, aponeuroosi, muu). Tuloksia verrattiin kahden eri tutkijan tekemiin manuaalisiin analyyseihin sek\u00e4 olemassa olevaan puoliautomaattiseen menetelm\u00e4\u00e4n. Kehitetty menetelm\u00e4 suoriutui yleisesti hyvin verrattuna manuaaliseen ja puoliautomaattiseen analyysiin, ja toimi vakaasti eri ultra\u00e4\u00e4nilaitteilla ja asetuksilla otetuilla kuvilla. Menetelm\u00e4 kykeni my\u00f6s havaitsemaan monia lihassolukimppuja samassa kuvassa. Esitelty l\u00e4hestymistapa tarjoaa objektiivisen, aikaa s\u00e4\u00e4st\u00e4v\u00e4n menetelm\u00e4n ultra\u00e4\u00e4nikuvien segmentointiin ilman k\u00e4ytt\u00e4j\u00e4n sy\u00f6tett\u00e4. Menetelm\u00e4 ja kaikki merkitty data ovat saatavilla avoimen l\u00e4hdekoodin lisenssill\u00e4, mahdollistaen toisten hy\u00f6dynt\u00e4\u00e4 ja laajentaa t\u00e4t\u00e4 ty\u00f6t\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Ultrasound is widely used to image musculoskeletal tissues, and offers many benefits including low cost, portability, and non-invasiveness. However, the analysis of ultrasound images remains an area in need of development. Until very recently, all analyses were performed manually, which is very subjective and time-consuming. There are currently very few open source methods designed for this purpose. Current approaches also tend to rely on rules-based analyses, and such methods tend to fail if images exhibit large deviations from those that were used to develop the method. In recent years, deep learning approaches to medical image analysis have been shown to yield excellent segmentation results on various imaging modalities, but such approaches have not yet been broadly applied to musculoskeletal ultrasound images. In this thesis I present a deep learning-based automated method that computes muscle architectural parameters from ultrasound images and videos. The method is based on the U-net architecture, and models were trained using hand-labelled images of muscle fascicles and aponeuroses. These trained models were then used to perform pixel-wise semantic segmentation of new images, classifying each pixel as one of three possible classes (fascicle, aponeurosis, other). The results were compared to manual analysis performed by two independent researchers, as well as to an existing semi-automated method. In general, the method performed very favourably when compared to manual and semi-automated analysis, and was robust to images from different muscles and those obtained with different ultrasound systems and settings. The method is also able to detect multiple muscle fascicles in a given image. The approach presented here offers an objective, time-efficient method of segmenting ultrasound images that does not require any user input. The method and all labelled training data are available under an open source license, allowing others to use and extend this work.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2020-04-15T05:08:55Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-04-15T05:08:55Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "56", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "deep learning", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "U-net", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Automated analysis of musculoskeletal ultrasound images using deep learning", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202004152743", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kuvantaminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ultra\u00e4\u00e4ni", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "lihakset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "segmentointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "imaging", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "ultrasound", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "muscles", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "segmentation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_68521
language eng
last_indexed 2025-03-31T20:01:44Z
main_date 2020-01-01T00:00:00Z
main_date_str 2020
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/967d3176-4818-4104-a342-22b421dc3158\/download","text":"URN:NBN:fi:jyu-202004152743.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2020
record_format qdc
source_str_mv jyx
spellingShingle Cronin, Neil Automated analysis of musculoskeletal ultrasound images using deep learning deep learning U-net Tietotekniikka Mathematical Information Technology 602 kuvantaminen ultraääni lihakset neuroverkot segmentointi imaging ultrasound muscles neural networks segmentation
title Automated analysis of musculoskeletal ultrasound images using deep learning
title_full Automated analysis of musculoskeletal ultrasound images using deep learning
title_fullStr Automated analysis of musculoskeletal ultrasound images using deep learning Automated analysis of musculoskeletal ultrasound images using deep learning
title_full_unstemmed Automated analysis of musculoskeletal ultrasound images using deep learning Automated analysis of musculoskeletal ultrasound images using deep learning
title_short Automated analysis of musculoskeletal ultrasound images using deep learning
title_sort automated analysis of musculoskeletal ultrasound images using deep learning
title_txtP Automated analysis of musculoskeletal ultrasound images using deep learning
topic deep learning U-net Tietotekniikka Mathematical Information Technology 602 kuvantaminen ultraääni lihakset neuroverkot segmentointi imaging ultrasound muscles neural networks segmentation
topic_facet 602 Mathematical Information Technology Tietotekniikka U-net deep learning imaging kuvantaminen lihakset muscles neural networks neuroverkot segmentation segmentointi ultrasound ultraääni
url https://jyx.jyu.fi/handle/123456789/68521 http://www.urn.fi/URN:NBN:fi:jyu-202004152743
work_keys_str_mv AT croninneil automatedanalysisofmusculoskeletalultrasoundimagesusingdeeplearning