fullrecord |
[{"key": "dc.contributor.advisor", "value": "Taskinen, Sara", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Pan, Yan", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2020-03-17T06:26:48Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2020-03-17T06:26:48Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2020", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/68203", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Sokealla signaalinerottelulla (Blind Source Separation, BSS) pyrit\u00e4\u00e4n erottelemaan todelliset signaalit havaituista signaaleista, kun ennakkotietoja sekoitusmatriisista ja todellisista signaaleista on vain v\u00e4h\u00e4n saatavilla. BSS-ongelmien ratkaisemiseksi on kehitetty erilaisia menetelmi\u00e4. N\u00e4ist\u00e4 toisen asteen sokea signaalinerottelu (Second-Order Blind Identi\ufb01cation, SOBI) tunnistaa l\u00e4hteet toisen asteen tunnuslukujen avulla (Tong et al., 1994). T\u00e4ss\u00e4 opinn\u00e4ytety\u00f6ss\u00e4 tarkastellaan toisen asteen sokean signaalinerottelumallin laajennusta (Yeredor, 2003), jossa sekoitusmatriisi muuttuu ajassa. Ty\u00f6ss\u00e4 esitell\u00e4\u00e4n paranneltu versio Yeredorin TV-SOBI (time-varying SOBI) algoritmista sek\u00e4 sen variaatioita. Algoritmit pyrkiv\u00e4t estimoimaan sekoitusmatriisin ja edelleen latentit signaalit otosautokovarianssimatriisin hajotelman sek\u00e4 yhteisdiagonalisoinnin avulla. Kehitetyn algoritmin (linearly time-varying SOBI, LTV-SOBI) suorituskysy\u00e4 arvioidaan simulointien avulla. Suorituskyvyn mittarina k\u00e4ytet\u00e4\u00e4n t\u00e4ss\u00e4 ty\u00f6ss\u00e4 kehitetty\u00e4 signaali-h\u00e4iri\u00f6 suhteen (Signal-to-Inference Ratio, SIR, Yeredor, 2003) laajennusta aikamuuttuvan signaalin tapaukseen. Simulaatiotulokset osoittavat uuden LTV-SOBI-algoritmin paremmuuden verrattuna Yeredorin TV-SOBI-algoritmiin. Tulokset eiv\u00e4t tosin ole viel\u00e4 optimaalisia. Lis\u00e4ksi ty\u00f6ss\u00e4 esitell\u00e4\u00e4n LTV-SOBI algorithmin R implementointi sek\u00e4 interaktiivinen R Shiny sovellus, jonka avulla algoritmien suorituskyky\u00e4 voidaan vertailla.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Blind Source Separation (BSS) seeks to recover the true signals from the observed ones when only limited information about the mixing matrix and the original sources are available. There are various methodologies established to solvetheBSSproblems, andnotably, Second-OrderBlindIdenti\ufb01cation(SOBI) identi\ufb01essourcesthroughsecond-orderstatistics(Tongetal., 1994). Thisthesis stretches the Second-Order Source Separation (SOS) model in terms of latent time variation in the mixing mechanism that was initially proposed by Yeredor (2003). An improved algorithm, Linearly Time-Varying SOBI (LTV-SOBI), togetherwithalternativesattemptstoestimatemixingparametersandultimately derives latent independent sources employing sample autocovariance decomposition and joint diagonalization. The performance of LTV-SOBI is analyzed withsimulateddatabyextendingtheperformancemetricSignal-to-interference ratio (SIR, Yeredor, 2003) into the time-varying case. Simulation results suggest the superiority of the new LTV-SOBI algorithm compared with Yeredor\u2019s TV-SOBI algorithm, despite overall results are still non-optimal. In addition to the full implementation of LTV-SOBI algorithm in R, an interactive dashboard is designed to enable further outlook of algorithm performance.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2020-03-17T06:26:48Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2020-03-17T06:26:48Z (GMT). No. of bitstreams: 0\n Previous issue date: 2020", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "42", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Blind Source Separation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Second-Order Blind Identi\ufb01cation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "SOBI", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Time-Varying Second-Order Blind Identi\ufb01cation", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "TV-SOBI", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Time-varying source separation by joint diagnolization on autocovariances", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-202003172427", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Matematiikan ja tilastotieteen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Mathematics and Statistics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tilastotiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Statistics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4043", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "signaalink\u00e4sittely", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tilastomenetelm\u00e4t", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "estimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matriisit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "signal processing", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "statistical methods", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "estimating", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "matrices", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
|