On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project

Bibliographic Details
Main Author: Kurkinen, Jani
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä, Tietotekniikka, Mathematical Information Technology, 602
Format: Master's thesis
Language:eng
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/65188
_version_ 1809901468540469248
annif_keywords_txtF_mv machine learning computer programmes deep learning data processing data science
annif_uris_txtF_mv http://www.yso.fi/onto/yso/p21846 http://www.yso.fi/onto/yso/p26592 http://www.yso.fi/onto/yso/p39324 http://www.yso.fi/onto/yso/p2407 http://www.yso.fi/onto/yso/p29172
author Kurkinen, Jani
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Tietotekniikka Mathematical Information Technology 602
author_facet Kurkinen, Jani Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Tietotekniikka Mathematical Information Technology 602 Kurkinen, Jani
author_sort Kurkinen, Jani
building Jyväskylän yliopisto JYX-julkaisuarkisto
datasource_str_mv jyx
department_txtF Informaatioteknologia
faculty_txtF Informaatioteknologian tiedekunta
first_indexed 2019-08-02T20:00:40Z
format Pro gradu
format_ext_str_mv Opinnäyte Pro gradu
free_online_boolean 1
fullrecord <?xml version="1.0"?> <qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project</title><creator>Kurkinen, Jani</creator><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="laitos" lang="fi">Informaatioteknologia</contributor><contributor type="laitos" lang="en">Information Technology</contributor><contributor type="yliopisto" lang="fi">Jyv&#xE4;skyl&#xE4;n yliopisto</contributor><contributor type="yliopisto" lang="en">University of Jyv&#xE4;skyl&#xE4;</contributor><contributor type="oppiaine" lang="fi">Tietotekniikka</contributor><contributor type="oppiaine" lang="en">Mathematical Information Technology</contributor><contributor type="oppiainekoodi">602</contributor><subject type="yso">koneoppiminen</subject><subject type="yso">neuroverkot</subject><subject type="yso">datatiede</subject><subject type="yso">tietotekniikka</subject><subject type="yso">machine learning</subject><subject type="yso">neural networks</subject><subject type="yso">data science</subject><subject type="yso">information technology</subject><available>2019-08-02T07:14:12Z</available><issued>2019</issued><type lang="fi">Pro gradu -tutkielma</type><type lang="en">Master&#x2019;s thesis</type><identifier type="uri">https://jyx.jyu.fi/handle/123456789/65188</identifier><identifier type="urn">URN:NBN:fi:jyu-201908023750</identifier><language type="iso">en</language><rights type="copyright" lang="fi">Julkaisu on tekij&#xE4;noikeuss&#xE4;&#xE4;nn&#xF6;sten alainen. Teosta voi lukea ja tulostaa henkil&#xF6;kohtaista k&#xE4;ytt&#xF6;&#xE4; varten. K&#xE4;ytt&#xF6; kaupallisiin tarkoituksiin on kielletty.</rights><rights type="copyright" lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-201908023750</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/65188/1/URN%3aNBN%3afi%3ajyu-201908023750.pdf" name="URN:NBN:fi:jyu-201908023750.pdf" type="application/pdf" length="1146998" sequence="1"/><recordID>123456789_65188</recordID></qualifieddc>
id jyx.123456789_65188
language eng
last_indexed 2024-09-03T10:52:43Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/65188\/1\/URN%3aNBN%3afi%3ajyu-201908023750.pdf","text":"URN:NBN:fi:jyu-201908023750.pdf","source":"jyx","mediaType":"application\/pdf"}
oppiainekoodi_txtF 602
publication_first_indexed 2019-08-02T20:00:40Z
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Kurkinen, Jani On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project koneoppiminen neuroverkot datatiede tietotekniikka machine learning neural networks data science information technology
subject_txtF Tietotekniikka
thumbnail https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_65188&index=0&size=large
title On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_full On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_fullStr On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_full_unstemmed On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_short On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_sort on practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_txtP On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
topic koneoppiminen neuroverkot datatiede tietotekniikka machine learning neural networks data science information technology
topic_facet data science datatiede information technology koneoppiminen machine learning neural networks neuroverkot tietotekniikka
url https://jyx.jyu.fi/handle/123456789/65188 http://www.urn.fi/URN:NBN:fi:jyu-201908023750
work_keys_str_mv AT kurkinenjani onpracticalitiesofidentifyingandimplementingasuitablesoftwarearchitectureforatypica