On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project

Tutkielmassa tarkastellaan, minkälaisia vaiheita tyypillinen syväoppimista hyödyntävä projekti sisältää ja minkälaisilla työkaluilla se voidaan toteuttaa. Tarkoituksena on selvittää, miten tietyillä ohjelmistotyökaluilla saadaan tuloksia aikaan valmiiksi kerätyllä datalla. Lisäksi kerrotaan lyhyesti...

Full description

Bibliographic Details
Main Author: Kurkinen, Jani
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/65188
_version_ 1826225709950959616
author Kurkinen, Jani
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Kurkinen, Jani Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Kurkinen, Jani Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Kurkinen, Jani
datasource_str_mv jyx
description Tutkielmassa tarkastellaan, minkälaisia vaiheita tyypillinen syväoppimista hyödyntävä projekti sisältää ja minkälaisilla työkaluilla se voidaan toteuttaa. Tarkoituksena on selvittää, miten tietyillä ohjelmistotyökaluilla saadaan tuloksia aikaan valmiiksi kerätyllä datalla. Lisäksi kerrotaan lyhyesti syväoppimiseen liittyvästä teoriasta ja demonstroidaan, miten valituilla työkaluilla voidaan rakentaa ja kouluttaa neuroverkko sekä käyttää sitä kuvantunnistukseen. Kuvantunnistusta voi tehdä useilla eri työkaluilla, ja tähän tutkielmaan valitut työkalut osoittautuivat hyviksi vaihtoehdoiksi helppokäyttöisyytensä ja monipuolisuutensa ansioista. This thesis describes what phases a typical deep learning project has and what tools can be used to implement it. The aim is to explore how to get results with certain software tools with existing data. In addition, theory behind deep learning will be briefly introduced. The practical part of this thesis demonstrates how a neural network can be built, trained and used for image classification with selected tools. Image classification can be done with various tools and the ones used in this thesis proved to be good choices because of their ease of use and feature richness.
first_indexed 2019-08-02T20:00:40Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Hakanen, Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Ojalehto, Vesa", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Kurkinen, Jani", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-08-02T07:14:12Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-08-02T07:14:12Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/65188", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Tutkielmassa tarkastellaan, mink\u00e4laisia vaiheita tyypillinen syv\u00e4oppimista hy\u00f6dynt\u00e4v\u00e4 projekti sis\u00e4lt\u00e4\u00e4 ja mink\u00e4laisilla ty\u00f6kaluilla se voidaan toteuttaa. Tarkoituksena on selvitt\u00e4\u00e4, miten tietyill\u00e4 ohjelmistoty\u00f6kaluilla saadaan tuloksia aikaan valmiiksi ker\u00e4tyll\u00e4 datalla. Lis\u00e4ksi kerrotaan lyhyesti syv\u00e4oppimiseen liittyv\u00e4st\u00e4 teoriasta ja demonstroidaan, miten valituilla ty\u00f6kaluilla voidaan rakentaa ja kouluttaa neuroverkko sek\u00e4 k\u00e4ytt\u00e4\u00e4 sit\u00e4 kuvantunnistukseen. Kuvantunnistusta voi tehd\u00e4 useilla eri ty\u00f6kaluilla, ja t\u00e4h\u00e4n tutkielmaan valitut ty\u00f6kalut osoittautuivat hyviksi vaihtoehdoiksi helppok\u00e4ytt\u00f6isyytens\u00e4 ja monipuolisuutensa ansioista.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "This thesis describes what phases a typical deep learning project has and what tools can be used to implement it. The aim is to explore how to get results with certain software tools with existing data. In addition, theory behind deep learning will be briefly introduced. The practical part of this thesis demonstrates how a neural network can be built, trained and used for image classification with selected tools. Image classification can be done with various tools and the ones used in this thesis proved to be good choices because of their ease of use and feature richness.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2019-08-02T07:14:12Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-08-02T07:14:12Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "60", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.title", "value": "On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201908023750", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "1000", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "business", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "datatiede", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tietotekniikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neural networks", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data science", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "information technology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_65188
language eng
last_indexed 2025-02-18T10:55:55Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/cde2ab13-99cf-4461-a622-31206ee5a188\/download","text":"URN:NBN:fi:jyu-201908023750.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Kurkinen, Jani On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project Tietotekniikka Mathematical Information Technology 602 koneoppiminen neuroverkot datatiede tietotekniikka machine learning neural networks data science information technology
title On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_full On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_fullStr On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_full_unstemmed On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_short On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_sort on practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
title_txtP On practicalities of identifying and implementing a suitable software architecture for a typical deep learning data science project
topic Tietotekniikka Mathematical Information Technology 602 koneoppiminen neuroverkot datatiede tietotekniikka machine learning neural networks data science information technology
topic_facet 602 Mathematical Information Technology Tietotekniikka data science datatiede information technology koneoppiminen machine learning neural networks neuroverkot tietotekniikka
url https://jyx.jyu.fi/handle/123456789/65188 http://www.urn.fi/URN:NBN:fi:jyu-201908023750
work_keys_str_mv AT kurkinenjani onpracticalitiesofidentifyingandimplementingasuitablesoftwarearchitectureforatypica