Degradation of bioplastic in anaerobic conditions

Muovien hajoamattomuus on synnyttänyt ympäristöongelman, jota yritetään ratkaista biohajoavien muovien avulla. Samalla mädätys kerää suosiota orgaanisen jätteen käsittelymenetelmänä biokaasupotentiaalin ja maanparannusaineeksi soveltuvan mädätysjäännöksen ansiosta. Muovien on kuitenkin havaittu...

Full description

Bibliographic Details
Main Author: Hirvonen, Mikael
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Bio- ja ympäristötieteiden laitos, Department of Biological and Environmental Science, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/64881
_version_ 1828193083530936320
author Hirvonen, Mikael
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_facet Hirvonen, Mikael Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä Hirvonen, Mikael Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_sort Hirvonen, Mikael
datasource_str_mv jyx
description Muovien hajoamattomuus on synnyttänyt ympäristöongelman, jota yritetään ratkaista biohajoavien muovien avulla. Samalla mädätys kerää suosiota orgaanisen jätteen käsittelymenetelmänä biokaasupotentiaalin ja maanparannusaineeksi soveltuvan mädätysjäännöksen ansiosta. Muovien on kuitenkin havaittu haittaavan mädätyslaitosten toimintaa Muovien biohajoamistutkimukset ovat myös painottuneet aerobisiin oloihin, kuten kompostointiin ja maaperäkokeisiin. Tämä tutkimus pyrkii tarkastelemaan muovin määrää biojätteessä ja termoplastisesta tärkkelyksestä valmistetun biomuovin hajoamista anaerobisissa oloissa. Tutkimus tehtiin mesofiilisena märkämädätyskokeena. Tässä tutkimuksessa tarkastelulla biomuovilla on EN13432-sertifikaatti, joka osoittaa tuotteen hajoavan teollisessa kompostoinnissa. Tutkimukseen kuului kaksi aikajännettä; 30 ja 90 vuorokautta. Tutkimusmateriaalit olivat termoplastinen tärkkelys, LLDPE ja paperi, joista LLDPE:tä käytettiin negatiivisena kontrollina, eli materiaalina, jonka ei odotettu hajoavan ja paperi taas oli positiivinen kontrolli. Materiaalien hajoamista tarkasteltiin visuaalisten havaintojen, massahäviön ja tuotetun biokaasun avulla. Termoplastinen tärkkelys menetti keskimäärin 14,9 ± 0.3 % massastaan 30 vuorokaudessa ja 21 ± 1 % 90 vuorokaudessa. Biokaasun tuottoon perustuvat mineralisaatioasteet ovat erittäin epävarmoja, koska materiaalien hiilipitoisuudesta ei ollut varmaa tietoa ja reaktorit kärsivät osin merkittävästä happi-inhibitiosta. Vähäinen biohajoaminen on mahdollista, sillä suurin saavutettu mineralisaatioaste termoplastiselle tärkkelykselle oli 14 % 30:ssä vuorokaudessa, mutta lukeman todettiin olevan virhemarginaalissa. Pidemmän aikajakson hyödyistä suurempana mineralisaatioasteena ei saatu todisteita, vaikka termoplastinen tärkkelys menettikin 6 prosenttiyksikköä enemmän massaa 90 vuorokaudessa 30 vuorokauden kokeeseen verrattuna, mikä oli tilastollisesti merkitsevä ero. Biokaasun tuotanto hidastui 30:n vuorokauden jälkeen, joten suuremman massahäviön 90 vuorokauden kokeessa ajateltiin johtuvan suurelta osin ympäristötekijöistä. Tässä työssä tarkastellun termoplastisen tärkkelyksen ei todettu hajoavan merkittävästi anaerobisisssa olosuhteissa EN13432 sertifikaatista huolimatta, mikä osoittaa etteivät aerobisissa olosuhteissa hajoavat muovit hajoa mädätyksessä. Plastics once applauded for their durability are now causing environmental harm for the same reason. To mitigate this issue, biodegradable plastics have been developed. Degradation studies however have mostly been conducted in aerobic conditions such as composting and soil. Anaerobic digestion has some advantages over aerobic digestion, for example anaerobic digestion produces methane rich biogas that can be used as a fuel. Plastics have been noted to be problematic for anaerobic digestion. This study aims to examine plastic contents in biowaste and provide insight on anaerobic degradability of thermoplastic starch, a kind of plastic made out of starch. The study was conducted as a wet digestion batch experiment in 37 °C with retention times of 30 and 90 days. Digestate from Mustankorkea anaerobic digestion plant was used as inoculum and leftover food from Ylistö restaurant was used to provide nutrients for the microbes. Sample materials were thermoplastic starch, LLDPE and paper. Degradability was assessed as relative mass loss and as amount of biogas produced out of theoretical maximum while also observing the materials visually. Theoretical maximum biogas yield was calculated assuming all carbon in a sample was converted into biogas. Thermoplastic starch lost on average 14.9 ± 0.3 % of mass in 30 days and 21 ± 1 % in 90 days. Meanwhile paper was completely disintegrated in 30 days and LLPDE gained mass possibly due to biofilm formation. Statistically signifigant increase in mass loss shows that degradation of thermoplastic starch continued throughout the last 60 days of test, albeit at reduced rate, despite minimal microbial activity. Plastics yielded less biogas than the mixture of inoculum and food waste resulting in the mineralization degrees being mostly negative. A low level of mineralisation may be achievable for the TPS studied here, as the highest mineralisation degree reached was 14 % in 30 days. However the margin of error for mineralisation degrees in this study is remarkable due to uncertainty regarding the carbon contents of the sample materials and notable oxygen inhibition, so 14 % is quite likely within the margin of error.
first_indexed 2019-09-20T09:13:32Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Tuhkanen, Tuula", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Sormunen, Kai", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Hirvonen, Mikael", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-06-27T11:23:09Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-06-27T11:23:09Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/64881", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Muovien hajoamattomuus on synnytt\u00e4nyt ymp\u00e4rist\u00f6ongelman, jota yritet\u00e4\u00e4n\r\nratkaista biohajoavien muovien avulla. Samalla m\u00e4d\u00e4tys ker\u00e4\u00e4 suosiota\r\norgaanisen j\u00e4tteen k\u00e4sittelymenetelm\u00e4n\u00e4 biokaasupotentiaalin ja\r\nmaanparannusaineeksi soveltuvan m\u00e4d\u00e4tysj\u00e4\u00e4nn\u00f6ksen ansiosta. Muovien on\r\nkuitenkin havaittu haittaavan m\u00e4d\u00e4tyslaitosten toimintaa Muovien\r\nbiohajoamistutkimukset ovat my\u00f6s painottuneet aerobisiin oloihin, kuten\r\nkompostointiin ja maaper\u00e4kokeisiin. T\u00e4m\u00e4 tutkimus pyrkii tarkastelemaan\r\nmuovin m\u00e4\u00e4r\u00e4\u00e4 bioj\u00e4tteess\u00e4 ja termoplastisesta t\u00e4rkkelyksest\u00e4 valmistetun\r\nbiomuovin hajoamista anaerobisissa oloissa. Tutkimus tehtiin mesofiilisena\r\nm\u00e4rk\u00e4m\u00e4d\u00e4tyskokeena. T\u00e4ss\u00e4 tutkimuksessa tarkastelulla biomuovilla on\r\nEN13432-sertifikaatti, joka osoittaa tuotteen hajoavan teollisessa kompostoinnissa.\r\nTutkimukseen kuului kaksi aikaj\u00e4nnett\u00e4; 30 ja 90 vuorokautta.\r\nTutkimusmateriaalit olivat termoplastinen t\u00e4rkkelys, LLDPE ja paperi, joista\r\nLLDPE:t\u00e4 k\u00e4ytettiin negatiivisena kontrollina, eli materiaalina, jonka ei odotettu\r\nhajoavan ja paperi taas oli positiivinen kontrolli. Materiaalien hajoamista\r\ntarkasteltiin visuaalisten havaintojen, massah\u00e4vi\u00f6n ja tuotetun biokaasun avulla.\r\nTermoplastinen t\u00e4rkkelys menetti keskim\u00e4\u00e4rin 14,9 \u00b1 0.3 % massastaan 30\r\nvuorokaudessa ja 21 \u00b1 1 % 90 vuorokaudessa. Biokaasun tuottoon perustuvat\r\nmineralisaatioasteet ovat eritt\u00e4in ep\u00e4varmoja, koska materiaalien\r\nhiilipitoisuudesta ei ollut varmaa tietoa ja reaktorit k\u00e4rsiv\u00e4t osin merkitt\u00e4v\u00e4st\u00e4\r\nhappi-inhibitiosta. V\u00e4h\u00e4inen biohajoaminen on mahdollista, sill\u00e4 suurin\r\nsaavutettu mineralisaatioaste termoplastiselle t\u00e4rkkelykselle oli 14 % 30:ss\u00e4\r\nvuorokaudessa, mutta lukeman todettiin olevan virhemarginaalissa. Pidemm\u00e4n\r\naikajakson hy\u00f6dyist\u00e4 suurempana mineralisaatioasteena ei saatu todisteita, vaikka\r\ntermoplastinen t\u00e4rkkelys menettikin 6 prosenttiyksikk\u00f6\u00e4 enemm\u00e4n massaa 90\r\nvuorokaudessa 30 vuorokauden kokeeseen verrattuna, mik\u00e4 oli tilastollisesti\r\nmerkitsev\u00e4 ero. Biokaasun tuotanto hidastui 30:n vuorokauden j\u00e4lkeen, joten\r\nsuuremman massah\u00e4vi\u00f6n 90 vuorokauden kokeessa ajateltiin johtuvan suurelta\r\nosin ymp\u00e4rist\u00f6tekij\u00f6ist\u00e4. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 tarkastellun termoplastisen t\u00e4rkkelyksen ei\r\ntodettu hajoavan merkitt\u00e4v\u00e4sti anaerobisisssa olosuhteissa EN13432 sertifikaatista\r\nhuolimatta, mik\u00e4 osoittaa etteiv\u00e4t aerobisissa olosuhteissa hajoavat muovit hajoa\r\nm\u00e4d\u00e4tyksess\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Plastics once applauded for their durability are now causing environmental harm\r\nfor the same reason. To mitigate this issue, biodegradable plastics have been\r\ndeveloped. Degradation studies however have mostly been conducted in aerobic\r\nconditions such as composting and soil. Anaerobic digestion has some advantages\r\nover aerobic digestion, for example anaerobic digestion produces methane rich\r\nbiogas that can be used as a fuel. Plastics have been noted to be problematic for\r\nanaerobic digestion. This study aims to examine plastic contents in biowaste and\r\nprovide insight on anaerobic degradability of thermoplastic starch, a kind of\r\nplastic made out of starch. The study was conducted as a wet digestion batch\r\nexperiment in 37 \u00b0C with retention times of 30 and 90 days. Digestate from\r\nMustankorkea anaerobic digestion plant was used as inoculum and leftover food\r\nfrom Ylist\u00f6 restaurant was used to provide nutrients for the microbes. Sample\r\nmaterials were thermoplastic starch, LLDPE and paper. Degradability was\r\nassessed as relative mass loss and as amount of biogas produced out of theoretical\r\nmaximum while also observing the materials visually. Theoretical maximum\r\nbiogas yield was calculated assuming all carbon in a sample was converted into\r\nbiogas. Thermoplastic starch lost on average 14.9 \u00b1 0.3 % of mass in 30 days and 21\r\n\u00b1 1 % in 90 days. Meanwhile paper was completely disintegrated in 30 days and\r\nLLPDE gained mass possibly due to biofilm formation. Statistically signifigant\r\nincrease in mass loss shows that degradation of thermoplastic starch continued\r\nthroughout the last 60 days of test, albeit at reduced rate, despite minimal\r\nmicrobial activity. Plastics yielded less biogas than the mixture of inoculum and\r\nfood waste resulting in the mineralization degrees being mostly negative. A low\r\nlevel of mineralisation may be achievable for the TPS studied here, as the highest\r\nmineralisation degree reached was 14 % in 30 days. However the margin of error for mineralisation degrees in this study is remarkable due to uncertainty regarding the carbon contents of the sample materials and notable oxygen inhibition, so 14 % is quite likely within the margin of error.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2019-06-27T11:23:09Z\r\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-06-27T11:23:09Z (GMT). No. of bitstreams: 0\r\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "71", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "anaerobic digestion", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "thermoplastic starch", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Degradation of bioplastic in anaerobic conditions", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201906273484", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Ymp\u00e4rist\u00f6tiede ja -teknologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Environmental science and technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.collaborator", "value": "business", "language": "", "element": "contractresearch", "qualifier": "collaborator", "schema": "yvv"}, {"key": "yvv.contractresearch.funding", "value": "1400", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "yvv.contractresearch.initiative", "value": "student", "language": "", "element": "contractresearch", "qualifier": "initiative", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4015", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biomuovi", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bioj\u00e4tteet", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biokaasu", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "muovi", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biohajoaminen", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "bioplastic", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biowaste", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biogas", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "plastic", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "biodegradation", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_64881
language eng
last_indexed 2025-03-31T20:01:37Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/30c73a3e-44c0-45f5-b8bf-0d03caa1baf5\/download","text":"URN:NBN:fi:jyu-201906273484.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Hirvonen, Mikael Degradation of bioplastic in anaerobic conditions anaerobic digestion thermoplastic starch Ympäristötiede ja -teknologia Environmental science and technology 4015 biomuovi biojätteet biokaasu muovi biohajoaminen bioplastic biowaste biogas plastic biodegradation
title Degradation of bioplastic in anaerobic conditions
title_full Degradation of bioplastic in anaerobic conditions
title_fullStr Degradation of bioplastic in anaerobic conditions Degradation of bioplastic in anaerobic conditions
title_full_unstemmed Degradation of bioplastic in anaerobic conditions Degradation of bioplastic in anaerobic conditions
title_short Degradation of bioplastic in anaerobic conditions
title_sort degradation of bioplastic in anaerobic conditions
title_txtP Degradation of bioplastic in anaerobic conditions
topic anaerobic digestion thermoplastic starch Ympäristötiede ja -teknologia Environmental science and technology 4015 biomuovi biojätteet biokaasu muovi biohajoaminen bioplastic biowaste biogas plastic biodegradation
topic_facet 4015 Environmental science and technology Ympäristötiede ja -teknologia anaerobic digestion biodegradation biogas biohajoaminen biojätteet biokaasu biomuovi bioplastic biowaste muovi plastic thermoplastic starch
url https://jyx.jyu.fi/handle/123456789/64881 http://www.urn.fi/URN:NBN:fi:jyu-201906273484
work_keys_str_mv AT hirvonenmikael degradationofbioplasticinanaerobicconditions