Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa

Pro gradu -tutkielma käsittelee Knowledge Discovery in Databases (KDD) -prosessin soveltamista asiakkaan sitoutumisen tutkimiseen asiakkuuden elinkaaren eri vaiheissa. Tavoitteena on selvittää, voidaanko suurista sivukyseludatoista ja sosiaalisen median datoista saada tiedonlouhinnalla hyödyllistä t...

Full description

Bibliographic Details
Main Author: Halonen, Merja
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:fin
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/64757
_version_ 1826225704820277248
author Halonen, Merja
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Halonen, Merja Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Halonen, Merja Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Halonen, Merja
datasource_str_mv jyx
description Pro gradu -tutkielma käsittelee Knowledge Discovery in Databases (KDD) -prosessin soveltamista asiakkaan sitoutumisen tutkimiseen asiakkuuden elinkaaren eri vaiheissa. Tavoitteena on selvittää, voidaanko suurista sivukyseludatoista ja sosiaalisen median datoista saada tiedonlouhinnalla hyödyllistä tietoa asiakkaan sitoutumisesta KDD-prosessia seuraten. Lisäksi tutkielmassa selvitetään, millaisia muita reaaliaikaisia datoja ja menetelmiä on käytetty sitoutumisen analysointiin. Empiiristen tulosten perusteella klusteroinnilla saadaan muodostettua asiakasryhmiä sitoutumisasteittain asiakkuuden elinkaaren eri vaiheissa tutkimalla reaaliaikaisten datojen erilaisia muunnoksia In this master’s thesis the Knowledge Discovery in Databases (KDD) process and its usage with customer engagement in different stages of the customer life cycle are discussed. The aim is to find out, whether KDD process and data mining can help to discover useful information from customer engagement by using large clickstream and social media data. In addition, the thesis explains what kind of non-purchase data and methods are used for analyzing the engagement. Based on empirical results, customers can be grouped according to the state of engagement by different transformations of non-purchase data using clustering.
first_indexed 2019-08-19T08:21:13Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "K\u00e4rkk\u00e4inen, Tommi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Halonen, Merja", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-06-20T07:52:06Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-06-20T07:52:06Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/64757", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Pro gradu -tutkielma k\u00e4sittelee Knowledge Discovery in Databases (KDD) -prosessin soveltamista asiakkaan sitoutumisen tutkimiseen asiakkuuden elinkaaren eri vaiheissa. Tavoitteena on selvitt\u00e4\u00e4, voidaanko suurista sivukyseludatoista ja sosiaalisen median datoista saada tiedonlouhinnalla hy\u00f6dyllist\u00e4 tietoa asiakkaan sitoutumisesta KDD-prosessia seuraten. Lis\u00e4ksi tutkielmassa selvitet\u00e4\u00e4n, millaisia muita reaaliaikaisia datoja ja menetelmi\u00e4\non k\u00e4ytetty sitoutumisen analysointiin. Empiiristen tulosten perusteella klusteroinnilla saadaan muodostettua asiakasryhmi\u00e4 sitoutumisasteittain asiakkuuden elinkaaren eri vaiheissa tutkimalla reaaliaikaisten datojen erilaisia muunnoksia", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this master\u2019s thesis the Knowledge Discovery in Databases (KDD) process and its usage with customer engagement in different stages of the customer life cycle are discussed. The aim is to find out, whether KDD process and data mining can help to discover useful information from customer engagement by using large clickstream and social media data. In addition, the thesis explains what kind of non-purchase data and methods are used for analyzing the engagement. Based on empirical results, customers can be grouped according to the state of engagement by different transformations of non-purchase data using clustering.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2019-06-20T07:52:06Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-06-20T07:52:06Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "135", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "knowledge discovery", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "asiakkaan sitoutuminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "asiakkuuden elinkaari", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "klusterointi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Tiedonlouhinnan hy\u00f6dynt\u00e4minen asiakkaan sitoutumisen tutkimisessa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201906203343", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tiedonlouhinta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "asiakkuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sitoutuminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_64757
language fin
last_indexed 2025-02-18T10:54:26Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/16a304ca-11a2-4314-927d-048c19a40d76\/download","text":"URN:NBN:fi:jyu-201906203343.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Halonen, Merja Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa knowledge discovery asiakkaan sitoutuminen asiakkuuden elinkaari klusterointi Tietotekniikka Mathematical Information Technology 602 tiedonlouhinta asiakkuus sitoutuminen
title Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_full Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_fullStr Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_full_unstemmed Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_short Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_sort tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
title_txtP Tiedonlouhinnan hyödyntäminen asiakkaan sitoutumisen tutkimisessa
topic knowledge discovery asiakkaan sitoutuminen asiakkuuden elinkaari klusterointi Tietotekniikka Mathematical Information Technology 602 tiedonlouhinta asiakkuus sitoutuminen
topic_facet 602 Mathematical Information Technology Tietotekniikka asiakkaan sitoutuminen asiakkuuden elinkaari asiakkuus klusterointi knowledge discovery sitoutuminen tiedonlouhinta
url https://jyx.jyu.fi/handle/123456789/64757 http://www.urn.fi/URN:NBN:fi:jyu-201906203343
work_keys_str_mv AT halonenmerja tiedonlouhinnanhyödyntäminenasiakkaansitoutumisentutkimisessa