Automatic detection of developmental dyslexia from eye movement data

Lukemisen erityisvaikeus eli dysleksia on maailmanlaajuisesti yleisin neurologinen oppimisvaikeus. Se voi hoitamattomana merkittävästi haitata yksilön akateemista menestystä. Erityisvaikeuden tunnistaminen ja hoitaminen aikaisessa vaiheessa voi kuitenkin vähentää huomattavasti häiriön aiheuttamia on...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Raatikainen, Peter
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2019
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/64482
_version_ 1828193082235944960
author Raatikainen, Peter
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Raatikainen, Peter Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Raatikainen, Peter Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Raatikainen, Peter
datasource_str_mv jyx
description Lukemisen erityisvaikeus eli dysleksia on maailmanlaajuisesti yleisin neurologinen oppimisvaikeus. Se voi hoitamattomana merkittävästi haitata yksilön akateemista menestystä. Erityisvaikeuden tunnistaminen ja hoitaminen aikaisessa vaiheessa voi kuitenkin vähentää huomattavasti häiriön aiheuttamia ongelmia. Tässä tutkimuksessa esitetään menetelmä tunnistaa dysleksia koneoppimisen avulla silmänliikedatasta. Hyödyntämällä suunnittelutieteen periaatteita oli mahdollista saada uutta tietoa käytettyyn aineistoon liittyen sekä luoda koneoppimismalli, joka pystyy luotettavasti tunnistamaan lukemisen erityisvaikeudesta kärsivät henkilöt. Tutkimuksessa käytettiin tukivektorikone- ja satunnaismetsä-menetelmiä ennustavien mallien luomiseksi. Parhaan saadun mallin tunnistamisen yleistarkkuus oli 89,8% ja dyslektikkojen tunnistamisen tarkkuus 75,9%. Dyslexia is the most common neurological learning disability found worldwide. Though it can seriously hinder individuals' academic success, detecting and treating it early on can drastically reduce its negative effect. Detecting dyslexia reliably and with ease is thus of paramount importance. In this thesis, a method using machine learning and eye movement data to predict if the reader has dyslexia is presented. By using the design science approach, it was possible to obtain new information regarding the data used in addition to a model capable of reliably predicting reading disorders. Support Vector Machine and Random Forest were the methods studied and applied to the data. The best model was obtained by the Support Vector Machine classifier using Random Forest to select the most important features: the general accuracy achieved was 89.8% and the accuracy of detecting dyslexics was 75.9%.
first_indexed 2019-08-19T08:21:44Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "K\u00e4rkk\u00e4inen, Tommi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Nieminen, Paavo", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Raatikainen, Peter", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-06-10T10:02:27Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-06-10T10:02:27Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/64482", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Lukemisen erityisvaikeus eli dysleksia on maailmanlaajuisesti yleisin neurologinen oppimisvaikeus. Se voi hoitamattomana merkitt\u00e4v\u00e4sti haitata yksil\u00f6n akateemista menestyst\u00e4. Erityisvaikeuden tunnistaminen ja hoitaminen aikaisessa vaiheessa voi kuitenkin v\u00e4hent\u00e4\u00e4 huomattavasti h\u00e4iri\u00f6n aiheuttamia ongelmia. T\u00e4ss\u00e4 tutkimuksessa esitet\u00e4\u00e4n menetelm\u00e4 tunnistaa dysleksia koneoppimisen avulla silm\u00e4nliikedatasta. Hy\u00f6dynt\u00e4m\u00e4ll\u00e4 suunnittelutieteen periaatteita oli mahdollista saada uutta tietoa k\u00e4ytettyyn aineistoon liittyen sek\u00e4 luoda koneoppimismalli, joka pystyy luotettavasti tunnistamaan lukemisen erityisvaikeudesta k\u00e4rsiv\u00e4t henkil\u00f6t. Tutkimuksessa k\u00e4ytettiin tukivektorikone- ja satunnaismets\u00e4-menetelmi\u00e4 ennustavien mallien luomiseksi. Parhaan saadun mallin tunnistamisen yleistarkkuus oli 89,8% ja dyslektikkojen tunnistamisen tarkkuus 75,9%.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Dyslexia is the most common neurological learning disability found worldwide. Though it can seriously hinder individuals' academic success, detecting and treating it early on can drastically reduce its negative effect. Detecting dyslexia reliably and with ease is thus of paramount importance. In this thesis, a method using machine learning and eye movement data to predict if the reader has dyslexia is presented. By using the design science approach, it was possible to obtain new information regarding the data used in addition to a model capable of reliably predicting reading disorders. Support Vector Machine and Random Forest were the methods studied and applied to the data. The best model was obtained by the Support Vector Machine classifier using Random Forest to select the most important features: the general accuracy achieved was 89.8% and the accuracy of detecting dyslexics was 75.9%.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2019-06-10T10:02:27Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-06-10T10:02:27Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "47", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Support Vector Machine", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Random Forest", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "design science", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Automatic detection of developmental dyslexia from eye movement data", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201906103105", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "silm\u00e4nliikkeet", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dysleksia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "eye movements", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "dyslexia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_64482
language eng
last_indexed 2025-03-31T20:02:36Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/5f5175aa-863c-452e-8b4a-f697534eec37\/download","text":"URN:NBN:fi:jyu-201906103105.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Raatikainen, Peter Automatic detection of developmental dyslexia from eye movement data Support Vector Machine Random Forest design science Tietotekniikka Mathematical Information Technology 602 silmänliikkeet dysleksia koneoppiminen eye movements dyslexia machine learning
title Automatic detection of developmental dyslexia from eye movement data
title_full Automatic detection of developmental dyslexia from eye movement data
title_fullStr Automatic detection of developmental dyslexia from eye movement data Automatic detection of developmental dyslexia from eye movement data
title_full_unstemmed Automatic detection of developmental dyslexia from eye movement data Automatic detection of developmental dyslexia from eye movement data
title_short Automatic detection of developmental dyslexia from eye movement data
title_sort automatic detection of developmental dyslexia from eye movement data
title_txtP Automatic detection of developmental dyslexia from eye movement data
topic Support Vector Machine Random Forest design science Tietotekniikka Mathematical Information Technology 602 silmänliikkeet dysleksia koneoppiminen eye movements dyslexia machine learning
topic_facet 602 Mathematical Information Technology Random Forest Support Vector Machine Tietotekniikka design science dysleksia dyslexia eye movements koneoppiminen machine learning silmänliikkeet
url https://jyx.jyu.fi/handle/123456789/64482 http://www.urn.fi/URN:NBN:fi:jyu-201906103105
work_keys_str_mv AT raatikainenpeter automaticdetectionofdevelopmentaldyslexiafromeyemovementdata