Multiobjective portfolio optimization including sentiment analysis

Volatility (or risk) in stock market is a crucial factor that has always been of great interest to investors to facilitate the decision making about their investments. The two core objectives of investors are optimization of volatility and generation of returns at the same time. One can also assume...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Faizan, Muhammad Azfar
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2019
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/64301
_version_ 1826225721406652416
author Faizan, Muhammad Azfar
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Faizan, Muhammad Azfar Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Faizan, Muhammad Azfar Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Faizan, Muhammad Azfar
datasource_str_mv jyx
description Volatility (or risk) in stock market is a crucial factor that has always been of great interest to investors to facilitate the decision making about their investments. The two core objectives of investors are optimization of volatility and generation of returns at the same time. One can also assume that news can be a factor which can determine volatility when combined with daily returns. In this study we used multiobjective optimization and sentiment analysis of news data together to create two models. In the first multiobjective optimization model, we optimize risk and returns using the conventional formulation and daily returns data. In the second multiobjective optimization model, we again optimize risk and returns but calculate returns differently using daily returns as well as sentiment analysis using news data to see if the model including news behaves differently as compared to the conventional model. The results of both the models have been analyzed in this study. It has been found that while keeping several factors constant, we found no difference in the risk and return of both the models.
first_indexed 2019-09-20T09:13:49Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Miettinen, Kaisa", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Hartikainen, Markus", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Faizan, Muhammad Azfar", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-06-04T08:18:22Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-06-04T08:18:22Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/64301", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Volatility (or risk) in stock market is a crucial factor that has always been of great interest to investors to facilitate the decision making about their investments. The two core objectives of investors are optimization of volatility and generation of returns at the same time. One can also assume that news can be a factor which can determine volatility when combined with daily returns. In this study we used multiobjective optimization and sentiment analysis of news data together to create two models. In the first multiobjective optimization model, we optimize risk and returns using the conventional formulation and daily returns data. In the second multiobjective optimization model, we again optimize risk and returns but calculate returns differently using daily returns as well as sentiment analysis using news data to see if the model including news behaves differently as compared to the conventional model. The results of both the models have been analyzed in this study. It has been found that while keeping several factors constant, we found no difference in the risk and return of both the models.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2019-06-04T08:18:22Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-06-04T08:18:22Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "62", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "Multiobjective optimization", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Big data analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Sentiment analysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Portfolio optimization", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Time series", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Multiobjective portfolio optimization including sentiment analysis", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201906042910", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "optimisation", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_64301
language eng
last_indexed 2025-02-18T10:55:12Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e53513c0-60ef-4099-88e9-2caa8e816aa7\/download","text":"URN:NBN:fi:jyu-201906042910.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Faizan, Muhammad Azfar Multiobjective portfolio optimization including sentiment analysis Multiobjective optimization Big data analysis Sentiment analysis Portfolio optimization Time series Tietotekniikka Mathematical Information Technology 602 big data optimointi data optimisation
title Multiobjective portfolio optimization including sentiment analysis
title_full Multiobjective portfolio optimization including sentiment analysis
title_fullStr Multiobjective portfolio optimization including sentiment analysis Multiobjective portfolio optimization including sentiment analysis
title_full_unstemmed Multiobjective portfolio optimization including sentiment analysis Multiobjective portfolio optimization including sentiment analysis
title_short Multiobjective portfolio optimization including sentiment analysis
title_sort multiobjective portfolio optimization including sentiment analysis
title_txtP Multiobjective portfolio optimization including sentiment analysis
topic Multiobjective optimization Big data analysis Sentiment analysis Portfolio optimization Time series Tietotekniikka Mathematical Information Technology 602 big data optimointi data optimisation
topic_facet 602 Big data analysis Mathematical Information Technology Multiobjective optimization Portfolio optimization Sentiment analysis Tietotekniikka Time series big data data optimisation optimointi
url https://jyx.jyu.fi/handle/123456789/64301 http://www.urn.fi/URN:NBN:fi:jyu-201906042910
work_keys_str_mv AT faizanmuhammadazfar multiobjectiveportfoliooptimizationincludingsentimentanalysis