AlphaZero shakkikoneena

DeepMindin koneoppiva go:ta, shogia ja shakkia pelaava AlphaZero yllätti shakkimaailman vuoden 2017 lopussa omalaatuisella ihmisläheisellä pelityylillään ja kiistattomalla tehokkuudellaan. Tässä tutkielmassa haluttiin selvittää AlphaZeron rakennetta sekä sen taustalla olevia menetelmiä. Syy AlphaZer...

Full description

Bibliographic Details
Main Author: Pitkänen, Jonni
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2019
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/64024
_version_ 1826225804373131264
author Pitkänen, Jonni
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Pitkänen, Jonni Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Pitkänen, Jonni Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Pitkänen, Jonni
datasource_str_mv jyx
description DeepMindin koneoppiva go:ta, shogia ja shakkia pelaava AlphaZero yllätti shakkimaailman vuoden 2017 lopussa omalaatuisella ihmisläheisellä pelityylillään ja kiistattomalla tehokkuudellaan. Tässä tutkielmassa haluttiin selvittää AlphaZeron rakennetta sekä sen taustalla olevia menetelmiä. Syy AlphaZeron menestykseen todettiin olevan sen ihmisistä riippumaton syvä vahvistettu oppiminen, sekä lupaaviin variaatioihin keskittyvä Monte-Carlo -puuhaku. Tiedon pohjalta pääteltiin, että AlphaZeron pelitilanteita analysoiva neuroverkko sekä liikkeitä etsivä puuhaku vastaavat yllättävän tarkasti perinteisten shakkikoneiden kaksiosaista mallia, mutta kummankin osan toteutus vaikuttaa olevan perinteisiä funktioita tehokkaampi. The world of chess was surprised in late 2017 by DeepMind's machine learning go-, shogi- and chess engine AlphaZero with it's unique human-like playstyle and it's undisputed efficiency. The objective of this thesis was to study the structure of AlphaZero and the methods used to complement it. According to the information gathered, the key to AlphaZero's success was it's human-independent deep reinforcement learning and it's Monte-Carlo Tree Search, that is able to concentrate on more promising variations. From these finds it was derived, that structure-wise AlphaZero resembles the traditional chess engine surprisingly well, but it seems AlphaZero's components are more effective in their tasks.
first_indexed 2024-09-11T08:50:47Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Lakanen, Antti-Jussi", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Pitk\u00e4nen, Jonni", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-05-17T07:04:41Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-05-17T07:04:41Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/64024", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "DeepMindin koneoppiva go:ta, shogia ja shakkia pelaava AlphaZero yll\u00e4tti shakkimaailman vuoden 2017 lopussa omalaatuisella ihmisl\u00e4heisell\u00e4 pelityylill\u00e4\u00e4n ja kiistattomalla tehokkuudellaan. T\u00e4ss\u00e4 tutkielmassa haluttiin selvitt\u00e4\u00e4 AlphaZeron rakennetta sek\u00e4 sen taustalla olevia menetelmi\u00e4. Syy AlphaZeron menestykseen todettiin olevan sen ihmisist\u00e4 riippumaton syv\u00e4 vahvistettu oppiminen, sek\u00e4 lupaaviin variaatioihin keskittyv\u00e4 Monte-Carlo -puuhaku. Tiedon pohjalta p\u00e4\u00e4teltiin, ett\u00e4 AlphaZeron pelitilanteita analysoiva neuroverkko sek\u00e4 liikkeit\u00e4 etsiv\u00e4 puuhaku vastaavat yll\u00e4tt\u00e4v\u00e4n tarkasti perinteisten shakkikoneiden kaksiosaista mallia, mutta kummankin osan toteutus vaikuttaa olevan perinteisi\u00e4 funktioita tehokkaampi.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The world of chess was surprised in late 2017 by DeepMind's machine learning go-, shogi- and chess engine AlphaZero with it's unique human-like playstyle and it's undisputed efficiency. The objective of this thesis was to study the structure of AlphaZero and the methods used to complement it. According to the information gathered, the key to AlphaZero's success was it's human-independent deep reinforcement learning and it's Monte-Carlo Tree Search, that is able to concentrate on more promising variations. From these finds it was derived, that structure-wise AlphaZero resembles the traditional chess engine surprisingly well, but it seems AlphaZero's components are more effective in their tasks.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2019-05-17T07:04:41Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-05-17T07:04:41Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "26", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "AlphaZero", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "DeepMind", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "shakkikone", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "vahvistettu oppiminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "MCTS", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "syv\u00e4oppiminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "AlphaZero shakkikoneena", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201905172653", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "602", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "shakki", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "algoritmit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "pelit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_64024
language fin
last_indexed 2025-02-18T10:56:32Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/2138b071-f3d6-4a9e-9978-6c3f445c737e\/download","text":"URN:NBN:fi:jyu-201905172653.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Pitkänen, Jonni AlphaZero shakkikoneena AlphaZero DeepMind shakkikone vahvistettu oppiminen MCTS syväoppiminen Tietotekniikka Mathematical Information Technology 602 shakki neuroverkot algoritmit pelit koneoppiminen
title AlphaZero shakkikoneena
title_full AlphaZero shakkikoneena
title_fullStr AlphaZero shakkikoneena AlphaZero shakkikoneena
title_full_unstemmed AlphaZero shakkikoneena AlphaZero shakkikoneena
title_short AlphaZero shakkikoneena
title_sort alphazero shakkikoneena
title_txtP AlphaZero shakkikoneena
topic AlphaZero DeepMind shakkikone vahvistettu oppiminen MCTS syväoppiminen Tietotekniikka Mathematical Information Technology 602 shakki neuroverkot algoritmit pelit koneoppiminen
topic_facet 602 AlphaZero DeepMind MCTS Mathematical Information Technology Tietotekniikka algoritmit koneoppiminen neuroverkot pelit shakki shakkikone syväoppiminen vahvistettu oppiminen
url https://jyx.jyu.fi/handle/123456789/64024 http://www.urn.fi/URN:NBN:fi:jyu-201905172653
work_keys_str_mv AT pitkänenjonni alphazeroshakkikoneena