Pehmolaskentamenetelmät tunkeilijan havaitsemisessa

Tässä kirjallisuuskatsauksessa tarkasteltiin kolmen yleisimmän pehmolaskentametodin, sumean logiikan, neuroverkkojen sekä evoluutiolaskennan, käyttöä tunkeilijan havaitsemisen prosesseissa. Tunkeilijan havaitsemisella tarkoitetaan järjestelmän luotettavuutta, eheyttä ja saatavuutta uhkaavien toimint...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Etelä, Noora
Muut tekijät: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Kandityö
Kieli:fin
Julkaistu: 2019
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/62818
_version_ 1828193210098253824
author Etelä, Noora
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Etelä, Noora Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Etelä, Noora Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Etelä, Noora
datasource_str_mv jyx
description Tässä kirjallisuuskatsauksessa tarkasteltiin kolmen yleisimmän pehmolaskentametodin, sumean logiikan, neuroverkkojen sekä evoluutiolaskennan, käyttöä tunkeilijan havaitsemisen prosesseissa. Tunkeilijan havaitsemisella tarkoitetaan järjestelmän luotettavuutta, eheyttä ja saatavuutta uhkaavien toimintojen havaitsemista. Tutkielman tarkoituksena oli jäsennellä aihealueen tutkimuskirjallisuuteen perustuen argumentteja kyseisten pehmolaskentametodien soveltamisen puolesta ja vastaan. Motiivina tutkielman suorittamiselle oli tietoverkkoturvallisuuden yleinen vastuu kehittyä kyberuhkien rinnalla ja torjua onnistuneesti tällaisia uhkia. Tutkimusasetteluna oli selvittää, miten älykkäät pehmolaskentametodit voivat parantaa tunkeilijan havaitsemisen prosessien toimintaa. Tutkielman tuloksien perusteella todettiin, että pehmolaskentametodien soveltaminen tunkeilijan havaitsemiseen on teoreettisesti perusteltua sekä eheä tutkimusalue, mutta pehmolaskentametodeja soveltavien tunkeilijan havaitsemisjärjestelmien toteuttaminen on puutteellisesti tutkittu sekä kehittyvä tutkimusaihe. The purpose of this literary review is to examine how the three most often used soft computing methods apply to the processes of intrusion detection. The intent of the study was to structure arguments for and against the application of fuzzy logic, neural networks and evolutionary computation to intrusion detection, based on available research literature of the subject area. The study was motivated with the overall responsibility of cyber security to develop alongside cyber threats and successfully combat such threats. The research problem was to find out how intelligent soft computing methods can improve the performance of intrusion detection processes. Based on the results of the study, it was found that the application of soft computing methods to detecting intrusions is justified as well as a theoretically sound research area, but the actual implementation of intrusion detection systems applying soft computing methods is poorly researched and still a developing research topic.
first_indexed 2019-08-19T08:21:11Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Luoma, Eetu", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Palonen, Teija", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Etel\u00e4, Noora", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-02-18T09:16:51Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-02-18T09:16:51Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2019", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/62818", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 kirjallisuuskatsauksessa tarkasteltiin kolmen yleisimm\u00e4n pehmolaskentametodin, sumean logiikan, neuroverkkojen sek\u00e4 evoluutiolaskennan, k\u00e4ytt\u00f6\u00e4 tunkeilijan havaitsemisen prosesseissa. Tunkeilijan havaitsemisella tarkoitetaan j\u00e4rjestelm\u00e4n luotettavuutta, eheytt\u00e4 ja saatavuutta uhkaavien toimintojen havaitsemista. Tutkielman tarkoituksena oli j\u00e4sennell\u00e4 aihealueen tutkimuskirjallisuuteen perustuen argumentteja kyseisten pehmolaskentametodien soveltamisen puolesta ja vastaan. Motiivina tutkielman suorittamiselle oli tietoverkkoturvallisuuden yleinen vastuu kehitty\u00e4 kyberuhkien rinnalla ja torjua onnistuneesti t\u00e4llaisia uhkia. Tutkimusasetteluna oli selvitt\u00e4\u00e4, miten \u00e4lykk\u00e4\u00e4t pehmolaskentametodit voivat parantaa tunkeilijan havaitsemisen prosessien toimintaa. Tutkielman tuloksien perusteella todettiin, ett\u00e4 pehmolaskentametodien soveltaminen tunkeilijan havaitsemiseen on teoreettisesti perusteltua sek\u00e4 ehe\u00e4 tutkimusalue, mutta pehmolaskentametodeja soveltavien tunkeilijan havaitsemisj\u00e4rjestelmien toteuttaminen on puutteellisesti tutkittu sek\u00e4 kehittyv\u00e4 tutkimusaihe.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "The purpose of this literary review is to examine how the three most often used soft computing methods apply to the processes of intrusion detection. The intent of the study was to structure arguments for and against the application of fuzzy logic, neural networks and evolutionary computation to intrusion detection, based on available research literature of the subject area. The study was motivated with the overall responsibility of cyber security to develop alongside cyber threats and successfully combat such threats. The research problem was to find out how intelligent soft computing methods can improve the performance of intrusion detection processes. Based on the results of the study, it was found that the application of soft computing methods to detecting intrusions is justified as well as a theoretically sound research area, but the actual implementation of intrusion detection systems applying soft computing methods is poorly researched and still a developing research topic.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2019-02-18T09:16:51Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-02-18T09:16:51Z (GMT). No. of bitstreams: 0\n Previous issue date: 2019", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "46", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "tunkeilijan havaitseminen", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "tunkeilijan havaitsemisj\u00e4rjestelm\u00e4", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "IDS", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "pehmolaskenta", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Pehmolaskentamenetelm\u00e4t tunkeilijan havaitsemisessa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201902181523", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "kyberturvallisuus", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "sumea logiikka", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "evoluutiolaskenta", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_62818
language fin
last_indexed 2025-03-31T20:01:05Z
main_date 2019-01-01T00:00:00Z
main_date_str 2019
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/9c1e8599-9501-4739-96cb-b819780e1825\/download","text":"URN:NBN:fi:jyu-201902181523.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2019
record_format qdc
source_str_mv jyx
spellingShingle Etelä, Noora Pehmolaskentamenetelmät tunkeilijan havaitsemisessa tunkeilijan havaitseminen tunkeilijan havaitsemisjärjestelmä IDS pehmolaskenta Tietojärjestelmätiede Information Systems Science 601 kyberturvallisuus sumea logiikka neuroverkot evoluutiolaskenta
title Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_full Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_fullStr Pehmolaskentamenetelmät tunkeilijan havaitsemisessa Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_full_unstemmed Pehmolaskentamenetelmät tunkeilijan havaitsemisessa Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_short Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_sort pehmolaskentamenetelmät tunkeilijan havaitsemisessa
title_txtP Pehmolaskentamenetelmät tunkeilijan havaitsemisessa
topic tunkeilijan havaitseminen tunkeilijan havaitsemisjärjestelmä IDS pehmolaskenta Tietojärjestelmätiede Information Systems Science 601 kyberturvallisuus sumea logiikka neuroverkot evoluutiolaskenta
topic_facet 601 IDS Information Systems Science Tietojärjestelmätiede evoluutiolaskenta kyberturvallisuus neuroverkot pehmolaskenta sumea logiikka tunkeilijan havaitseminen tunkeilijan havaitsemisjärjestelmä
url https://jyx.jyu.fi/handle/123456789/62818 http://www.urn.fi/URN:NBN:fi:jyu-201902181523
work_keys_str_mv AT etelänoora pehmolaskentamenetelmättunkeilijanhavaitsemisessa