Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities

Molekyylin ja valon vahvassa kytkennässä sähkömagneettinen säteily ja materia muodostavat uusia koherentteja hybriditiloja, joiden välistä energiaeroa sanotaan Rabi-energiaksi. Kytkennän tutkimus on synnyttänyt uuden Polaritonikemiaksi kutsutun alan, jossa käytetään hyväksi elektromagneettisten ja m...

Full description

Bibliographic Details
Main Author: Hakamaa, Ossi
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Fysiikan laitos, Department of Physics, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2018
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/62450
_version_ 1828193095950270464
author Hakamaa, Ossi
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_facet Hakamaa, Ossi Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä Hakamaa, Ossi Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Fysiikan laitos Department of Physics Jyväskylän yliopisto University of Jyväskylä
author_sort Hakamaa, Ossi
datasource_str_mv jyx
description Molekyylin ja valon vahvassa kytkennässä sähkömagneettinen säteily ja materia muodostavat uusia koherentteja hybriditiloja, joiden välistä energiaeroa sanotaan Rabi-energiaksi. Kytkennän tutkimus on synnyttänyt uuden Polaritonikemiaksi kutsutun alan, jossa käytetään hyväksi elektromagneettisten ja molekulaaristen oskillaattorien vahvaa kytkentää. Siinä pyritään vaikuttamaan kytkennällä molekyylien potentiaalienergiapintoihin ja sitä kautta niiden kemiallisiin reaktioihin. Tässä työssä tutkitaan 10-hydroksibentso- [h]quinoliini -molekyylin ja mikrokaviteettien kytkentää ja sen vaikutusta molekyylin virittyneen tilan sisäiseen protoninsiirtoreaktioon. Fabry-Pérot -tyyppiset mikrokaviteetit muokattiin toimimaan ultraviolettisäteilyn alueella käyttämällä peileinä höyrystettyjä alumiiniohutkalvoja ja substraattina kvartsia. Metallisten peilien väliin pinnoitettiin tutkittava molekyyli PMMA-polymeerimatriisiin sekoitettuna. Kaviteeteista ja filmeistä mitattiin transmissio, reflektio ja luminesenssi kulman ja aallonpituuden funktiona. Mikrokaviteetit saatiin toimimaan resonanssissa molekyylin absorptiomaksimin aallonpituudella 375 nm ja Q arvoksi tuli ohuimmilla peileillä 4,3 ja paksuimmilla 18,7. Rabi-energiat polaritonien välillä olivat nollasta 195 meV asti, mikä määritettiin transmission dispersiokäyristä. Molekyylifilmin luminesenssimittauksessa havaittiin fluoresenssia protoninsiirtoreaktion jälkeistä muotoa vastaavalta 610 nm aallonpituudelta sekä kaviteetissa että sen ulkopuolelta. Fluoresenssin intensiteetin kaviteetin sisältä havaittiin kasvavan kytkennän voimistuessa, vaikka viritetyn hybriditilan absorptio otettiin huomioon. Näyttö vahvasta kytkennästä tässä työssä oli suuntaa-antavaa, koska Rabi energiat eivät olleet selvästi siirtymien puoliarvonleveyksiä suurempia. Näytteistä havaittu fluoresenssi viittaisi siihen, että protoninsiirtoreaktio ei estynyt työssä saavutetun vahvan kytkennän seurauksena. Kuitenkin havaitun fluoresenssin vahvistuminen viittaisi energiansiirtoon, joka on entuudestaan tunnetun Purcell-efektin kaltainen, mutta tapahtuu kaviteetin tilatiheyden ulkopuolella. Strong coupling between an optically active molecule and light leads to a hybridization of light and matter in a way that results in new coherent states that are separated by a Rabi split. This coupling has given rise to a new field called Polariton chemistry which exploits strong coupling between electromagnetic modes and molecular transitions in order to affect the chemistry of the molecule via modification of its potential energy surfaces. In this work the coupling between 10-hydroxybenzo-[h]quinoline and microcavities is explored and its effect on the molecule’s excited state intramolecular proton transfer reaction is studied. Fabry-Pérot type microcavities are adapted to work in the ultraviolet wavelengths by using aluminum mirrors evaporated on quartz substrates. The molecule is embedded in a PMMA matrix that is spin coated between the metallic mirrors. Transmission, reflection and luminescence measurements are performed to characterize the cavities and films. Microcavity samples with resonances at the molecule’s absorption maximum of 375 nm and Q factors between 4.3 and 18.7 depending on the mirror thickness were demonstrated. Couplings from 0 up to 195 meV between polariton branches are shown in the transmission dispersion. Luminescence measurement detects fluorescence of the proton transferred form of the molecule around 610 nm from film both with and without cavity. The intensity of the fluorescence is found to increase with stronger coupling compared to the absorption of the hybrid state. The evidence of strong coupling is found to be insufficient in this study as the Rabi splits are not large enough compared to the line widths of the peaks. The fluorescence of the molecule suggests that the reaction of the molecule is not suppressed. The enhancement of the fluorescence intensity suggests an energy transfer mechanism to the molecule that is different than the previously known Purcell effect.
first_indexed 2019-08-19T08:21:47Z
format Pro gradu
fullrecord [{"key": "dc.contributor.author", "value": "Hakamaa, Ossi", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-01-14T06:25:31Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-01-14T06:25:31Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2018", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/62450", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Molekyylin ja valon vahvassa kytkenn\u00e4ss\u00e4 s\u00e4hk\u00f6magneettinen s\u00e4teily ja materia muodostavat uusia koherentteja hybriditiloja, joiden v\u00e4list\u00e4 energiaeroa sanotaan Rabi-energiaksi.\nKytkenn\u00e4n tutkimus on synnytt\u00e4nyt uuden Polaritonikemiaksi kutsutun alan, jossa k\u00e4ytet\u00e4\u00e4n hyv\u00e4ksi elektromagneettisten ja molekulaaristen oskillaattorien vahvaa kytkent\u00e4\u00e4. Siin\u00e4 pyrit\u00e4\u00e4n vaikuttamaan kytkenn\u00e4ll\u00e4 molekyylien potentiaalienergiapintoihin\nja sit\u00e4 kautta niiden kemiallisiin reaktioihin. T\u00e4ss\u00e4 ty\u00f6ss\u00e4 tutkitaan 10-hydroksibentso-\n[h]quinoliini -molekyylin ja mikrokaviteettien kytkent\u00e4\u00e4 ja sen vaikutusta molekyylin\nvirittyneen tilan sis\u00e4iseen protoninsiirtoreaktioon.\nFabry-P\u00e9rot -tyyppiset mikrokaviteetit muokattiin toimimaan ultraviolettis\u00e4teilyn alueella k\u00e4ytt\u00e4m\u00e4ll\u00e4 peilein\u00e4 h\u00f6yrystettyj\u00e4 alumiiniohutkalvoja ja substraattina kvartsia.\nMetallisten peilien v\u00e4liin pinnoitettiin tutkittava molekyyli PMMA-polymeerimatriisiin\nsekoitettuna. Kaviteeteista ja filmeist\u00e4 mitattiin transmissio, reflektio ja luminesenssi\nkulman ja aallonpituuden funktiona. Mikrokaviteetit saatiin toimimaan resonanssissa molekyylin absorptiomaksimin aallonpituudella 375 nm ja Q arvoksi tuli ohuimmilla peileill\u00e4\n4,3 ja paksuimmilla 18,7. Rabi-energiat polaritonien v\u00e4lill\u00e4 olivat nollasta 195 meV asti,\nmik\u00e4 m\u00e4\u00e4ritettiin transmission dispersiok\u00e4yrist\u00e4. Molekyylifilmin luminesenssimittauksessa havaittiin fluoresenssia protoninsiirtoreaktion j\u00e4lkeist\u00e4 muotoa vastaavalta 610 nm\naallonpituudelta sek\u00e4 kaviteetissa ett\u00e4 sen ulkopuolelta. Fluoresenssin intensiteetin kaviteetin sis\u00e4lt\u00e4 havaittiin kasvavan kytkenn\u00e4n voimistuessa, vaikka viritetyn hybriditilan\nabsorptio otettiin huomioon.\nN\u00e4ytt\u00f6 vahvasta kytkenn\u00e4st\u00e4 t\u00e4ss\u00e4 ty\u00f6ss\u00e4 oli suuntaa-antavaa, koska Rabi energiat eiv\u00e4t\nolleet selv\u00e4sti siirtymien puoliarvonleveyksi\u00e4 suurempia. N\u00e4ytteist\u00e4 havaittu fluoresenssi\nviittaisi siihen, ett\u00e4 protoninsiirtoreaktio ei estynyt ty\u00f6ss\u00e4 saavutetun vahvan kytkenn\u00e4n\nseurauksena. Kuitenkin havaitun fluoresenssin vahvistuminen viittaisi energiansiirtoon,\njoka on entuudestaan tunnetun Purcell-efektin kaltainen, mutta tapahtuu kaviteetin\ntilatiheyden ulkopuolella.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Strong coupling between an optically active molecule and light leads to a hybridization\nof light and matter in a way that results in new coherent states that are separated by a\nRabi split. This coupling has given rise to a new field called Polariton chemistry which\nexploits strong coupling between electromagnetic modes and molecular transitions in order\nto affect the chemistry of the molecule via modification of its potential energy surfaces. In\nthis work the coupling between 10-hydroxybenzo-[h]quinoline and microcavities is explored\nand its effect on the molecule\u2019s excited state intramolecular proton transfer reaction is\nstudied.\nFabry-P\u00e9rot type microcavities are adapted to work in the ultraviolet wavelengths by\nusing aluminum mirrors evaporated on quartz substrates. The molecule is embedded in a\nPMMA matrix that is spin coated between the metallic mirrors. Transmission, reflection\nand luminescence measurements are performed to characterize the cavities and films.\nMicrocavity samples with resonances at the molecule\u2019s absorption maximum of 375 nm\nand Q factors between 4.3 and 18.7 depending on the mirror thickness were demonstrated.\nCouplings from 0 up to 195 meV between polariton branches are shown in the transmission\ndispersion. Luminescence measurement detects fluorescence of the proton transferred form\nof the molecule around 610 nm from film both with and without cavity. The intensity of\nthe fluorescence is found to increase with stronger coupling compared to the absorption of\nthe hybrid state.\nThe evidence of strong coupling is found to be insufficient in this study as the Rabi splits\nare not large enough compared to the line widths of the peaks. The fluorescence of the\nmolecule suggests that the reaction of the molecule is not suppressed. The enhancement\nof the fluorescence intensity suggests an energy transfer mechanism to the molecule that\nis different than the previously known Purcell effect.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2019-01-14T06:25:31Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-01-14T06:25:31Z (GMT). No. of bitstreams: 0\n Previous issue date: 2018", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "43", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "vahva kytkent\u00e4", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "molekyylit", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "optiset kaviteetit", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "fluoresenssi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "polaritonikemia", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "ohutkalvo", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "kvanttisaanto", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "strong coupling", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "molecules", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "optical cavities", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "fluorescence", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "polariton chemistry", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "thin film", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "quantum yield", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201901141175", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Fysiikan laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Physics", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Fysiikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Physics", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "restrictedAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4021", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "The author has not given permission to make the work publicly available electronically. Therefore the material can be read only at the archival workstation at Jyv\u00e4skyl\u00e4 University Library (https://kirjasto.jyu.fi/en/workspaces/facilities).", "language": "en", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.rights.accessrights", "value": "Tekij\u00e4 ei ole antanut lupaa avoimeen julkaisuun, joten aineisto on luettavissa vain Jyv\u00e4skyl\u00e4n yliopiston kirjaston arkistoty\u00f6semalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat..", "language": "fi", "element": "rights", "qualifier": "accessrights", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_62450
language eng
last_indexed 2025-03-31T20:02:45Z
main_date 2018-01-01T00:00:00Z
main_date_str 2018
publishDate 2018
record_format qdc
source_str_mv jyx
spellingShingle Hakamaa, Ossi Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities vahva kytkentä molekyylit optiset kaviteetit fluoresenssi polaritonikemia ohutkalvo kvanttisaanto strong coupling molecules optical cavities fluorescence polariton chemistry thin film quantum yield Fysiikka Physics 4021
title Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
title_full Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
title_fullStr Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
title_full_unstemmed Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
title_short Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
title_sort strong coupling between 10 hydroxybenzo h quinoline and microcavities
title_txtP Strong coupling between 10- hydroxybenzo-[h]quinoline and microcavities
topic vahva kytkentä molekyylit optiset kaviteetit fluoresenssi polaritonikemia ohutkalvo kvanttisaanto strong coupling molecules optical cavities fluorescence polariton chemistry thin film quantum yield Fysiikka Physics 4021
topic_facet 4021 Fysiikka Physics fluorescence fluoresenssi kvanttisaanto molecules molekyylit ohutkalvo optical cavities optiset kaviteetit polariton chemistry polaritonikemia quantum yield strong coupling thin film vahva kytkentä
url https://jyx.jyu.fi/handle/123456789/62450 http://www.urn.fi/URN:NBN:fi:jyu-201901141175
work_keys_str_mv AT hakamaaossi strongcouplingbetween10hydroxybenzohquinolineandmicrocavities