Developing and testing sub-band spectral features in music genre and music mood machine learning

In the field of artificial intelligence, supervised machine learning enables us to try to develop automatic recognition systems. In music information retrieval, training and testing such systems is possible with a variety of music datasets. Two key prediction tasks are those of music genre recogniti...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Prezja, Fabi
Muut tekijät: Humanistis-yhteiskuntatieteellinen tiedekunta, Faculty of Humanities and Social Sciences, Musiikin, taiteen ja kulttuurin tutkimuksen laitos, Department of Music, Art and Culture Studies, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2018
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/60963
_version_ 1828193095941881856
author Prezja, Fabi
author2 Humanistis-yhteiskuntatieteellinen tiedekunta Faculty of Humanities and Social Sciences Musiikin, taiteen ja kulttuurin tutkimuksen laitos Department of Music, Art and Culture Studies Jyväskylän yliopisto University of Jyväskylä
author_facet Prezja, Fabi Humanistis-yhteiskuntatieteellinen tiedekunta Faculty of Humanities and Social Sciences Musiikin, taiteen ja kulttuurin tutkimuksen laitos Department of Music, Art and Culture Studies Jyväskylän yliopisto University of Jyväskylä Prezja, Fabi Humanistis-yhteiskuntatieteellinen tiedekunta Faculty of Humanities and Social Sciences Musiikin, taiteen ja kulttuurin tutkimuksen laitos Department of Music, Art and Culture Studies Jyväskylän yliopisto University of Jyväskylä
author_sort Prezja, Fabi
datasource_str_mv jyx
description In the field of artificial intelligence, supervised machine learning enables us to try to develop automatic recognition systems. In music information retrieval, training and testing such systems is possible with a variety of music datasets. Two key prediction tasks are those of music genre recognition, and of music mood recognition. The focus of this study is to evaluate the classification of music into genres and mood categories from the audio content. To this end, we evaluate five novel spectro-temporal variants of sub-band musical features. These features are, sub-band entropy, sub-band flux, sub-band kurtosis, sub-band skewness and sub-band zero crossing rate. The choice of features is based on previous studies that highlight the potential efficacy of sub-band features. To aid our analysis we include the Mel-Frequency Cepstral Coefficients feature as our baseline approach. The classification performances are obtained with various learning algorithms, distinct datasets and multiple feature selection subsets. In order to create and evaluate models in both tasks, we use two music datasets prelabelled with regards to, music genres (GTZAN) and music mood (PandaMood) respectively. In addition, this study is the first to develop an adaptive window decomposition method for these sub-band features and one of a handful few that uses artist filtering and fault filtering for the GTZAN dataset. Our results show that the vast majority of sub-band features outperformed the MFCCs in the music genre and the music mood tasks. Between individual features, sub-band entropy outperformed and outranked every feature in both tasks and feature selection approaches. Lastly, we find lower overfitting tendencies for sub-band features in comparison to the MFCCs. In summary, this study gives support to the use of these sub-band features for music genre and music mood classification tasks and further suggests uses in other content-based predictive tasks.
first_indexed 2019-08-19T08:21:34Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Toiviainen, Petri", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Prezja, Fabi", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2019-01-08T12:49:39Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2019-01-08T12:49:39Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2018", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/60963", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In the field of artificial intelligence, supervised machine learning enables us to try to develop automatic recognition systems. In music information retrieval, training and testing such systems is possible with a variety of music datasets. Two key prediction tasks are those of music genre recognition, and of music mood recognition. The focus of this study is to evaluate the classification of music into genres and mood categories from the audio content. To this end, we evaluate five novel spectro-temporal variants of sub-band musical features. These features are, sub-band entropy, sub-band flux, sub-band kurtosis, sub-band skewness and sub-band zero crossing rate. The choice of features is based on previous studies that highlight the potential efficacy of sub-band features. To aid our analysis we include the Mel-Frequency Cepstral Coefficients feature as our baseline approach. The classification performances are obtained with various learning algorithms, distinct datasets and multiple feature selection subsets. In order to create and evaluate models in both tasks, we use two music datasets prelabelled with regards to, music genres (GTZAN) and music mood (PandaMood) respectively. In addition, this study is the first to develop an adaptive window decomposition method for these sub-band features and one of a handful few that uses artist filtering and fault filtering for the GTZAN dataset. Our results show that the vast majority of sub-band features outperformed the MFCCs in the music genre and the music mood tasks. Between individual features, sub-band entropy outperformed and outranked every feature in both tasks and feature selection approaches. Lastly, we find lower overfitting tendencies for sub-band features in comparison to the MFCCs. In summary, this study gives support to the use of these sub-band features for music genre and music mood classification tasks and further suggests uses in other content-based predictive tasks.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Miia Hakanen (mihakane@jyu.fi) on 2019-01-08T12:49:39Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2019-01-08T12:49:39Z (GMT). No. of bitstreams: 0\n Previous issue date: 2018", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "114", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "music information retrieval", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "music genre classification", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "music mood classification", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "sub-band features", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "polyphonic timbre", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "spectral features", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "adaptive spectral window decomposition", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Developing and testing sub-band spectral features in music genre and music mood machine learning", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201901081104", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Humanistis-yhteiskuntatieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Humanities and Social Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Musiikin, taiteen ja kulttuurin tutkimuksen laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Music, Art and Culture Studies", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Music, Mind and Technology (maisteriohjelma)", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master's Degree Programme in Music, Mind and Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "3054", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "koneoppiminen", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "genret", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "luokitus (toiminta)", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "machine learning", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "genres", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "classification", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_60963
language eng
last_indexed 2025-03-31T20:02:12Z
main_date 2018-01-01T00:00:00Z
main_date_str 2018
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/16577d90-66b9-476c-849c-0bd066b69383\/download","text":"URN:NBN:fi:jyu-201901081104.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2018
record_format qdc
source_str_mv jyx
spellingShingle Prezja, Fabi Developing and testing sub-band spectral features in music genre and music mood machine learning music information retrieval music genre classification music mood classification sub-band features polyphonic timbre spectral features adaptive spectral window decomposition Music, Mind and Technology (maisteriohjelma) Master's Degree Programme in Music, Mind and Technology 3054 koneoppiminen genret luokitus (toiminta) machine learning genres classification
title Developing and testing sub-band spectral features in music genre and music mood machine learning
title_full Developing and testing sub-band spectral features in music genre and music mood machine learning
title_fullStr Developing and testing sub-band spectral features in music genre and music mood machine learning Developing and testing sub-band spectral features in music genre and music mood machine learning
title_full_unstemmed Developing and testing sub-band spectral features in music genre and music mood machine learning Developing and testing sub-band spectral features in music genre and music mood machine learning
title_short Developing and testing sub-band spectral features in music genre and music mood machine learning
title_sort developing and testing sub band spectral features in music genre and music mood machine learning
title_txtP Developing and testing sub-band spectral features in music genre and music mood machine learning
topic music information retrieval music genre classification music mood classification sub-band features polyphonic timbre spectral features adaptive spectral window decomposition Music, Mind and Technology (maisteriohjelma) Master's Degree Programme in Music, Mind and Technology 3054 koneoppiminen genret luokitus (toiminta) machine learning genres classification
topic_facet 3054 Master's Degree Programme in Music, Mind and Technology Music, Mind and Technology (maisteriohjelma) adaptive spectral window decomposition classification genres genret koneoppiminen luokitus (toiminta) machine learning music genre classification music information retrieval music mood classification polyphonic timbre spectral features sub-band features
url https://jyx.jyu.fi/handle/123456789/60963 http://www.urn.fi/URN:NBN:fi:jyu-201901081104
work_keys_str_mv AT prezjafabi developingandtestingsubbandspectralfeaturesinmusicgenreandmusicmoodmachinelearning