Gene expression patterns during anhydrobiosis in Hypsibius exemplaris

Identifying and understanding the role of genes underlying adaptive phenotypes is a major goal of modern evolutionary ecology. Anhydrobiosis is phenotypic adaptation that allows individuals to withstand the temporary desiccation of their otherwise aquatic environment. It is common across microinvert...

Full description

Bibliographic Details
Main Author: Nikupaavola, Tiia
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Bio- ja ympäristötieteiden laitos, Department of Biological and Environmental Science, Jyväskylän yliopisto, University of Jyväskylä
Format: Master's thesis
Language:eng
Published: 2018
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/59793
_version_ 1828193093950636032
author Nikupaavola, Tiia
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_facet Nikupaavola, Tiia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä Nikupaavola, Tiia Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Bio- ja ympäristötieteiden laitos Department of Biological and Environmental Science Jyväskylän yliopisto University of Jyväskylä
author_sort Nikupaavola, Tiia
datasource_str_mv jyx
description Identifying and understanding the role of genes underlying adaptive phenotypes is a major goal of modern evolutionary ecology. Anhydrobiosis is phenotypic adaptation that allows individuals to withstand the temporary desiccation of their otherwise aquatic environment. It is common across microinvertebrate groups, namely tardigrades. Gene expression analyses provide a window to the molecular mechanisms that enable organisms to survive and recover from these events. Proteins of three major groups have been suggested to have a key role in such adaptations: heat-shock proteins (HSPs), aquaporins (AQPs) and late embryogenic abundant proteins (LEAs). However, previous studies have largely focused on only a small subset of these proteins, and/or only compared effects between the end points of the anhydrobiosis process (i.e. dry vs. active individuals). In my study, I combine for the first time (i) the simultaneous estimate of expression levels in all three key protein groups, and (ii) a comparison across consecutive anhydrobiosis states (active, transitioning and dry), using the tardigrade Hypsibius exemplaris. Moreover, by using digital droplet PCR (ddPCR), a novel approach that is optimized for small sampling units, I could obtain more precise expression measures. The results show different patterns of gene expression in all target genes. The expression level of HSP70-like 1 dropped by 80% in the dry state compared to the transition state, while the transcript copies halved between active and transitional states. HSP70-like 1 transcript numbers stayed similar between active and transitional states. AQP10 expression levels were 3 time more in the active state and 5 times more in the preconditioning state, while the dry state had 3 times more transcript copies compared to the transitional state. LEA1 showed induction during the preconditioning state, while the expression levels in active, transition and dry states stayed similar. The findings from HSP70-like 1 are similar to expression changes in HSP70-3 observed previously in the tardigrade Milnesium tardigradum. This implies that HSP70-like 1 might have a similar role in H. exemplaris. The induction of AQP10 in preconditioning suggests this gene is important for H. exemplaris when entering anhydrobiosis. The induction of LEA1 in the preconditioning state also suggests this gene has a role in entering anhydrobiosis. In conclusion, this study illustrates the importance of studying species-specific mechanisms of tardigrade adaptation to changing limnoterrestrial conditions as well as provides a benchmark for comparative studies and future experimental research.
first_indexed 2024-09-11T08:52:18Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Knott, Emily", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.advisor", "value": "Calhim, Sara", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "Nikupaavola, Tiia", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2018-10-10T05:31:54Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2018-10-10T05:31:54Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2018", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/59793", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Identifying and understanding the role of genes underlying adaptive phenotypes is a major goal of modern evolutionary ecology. Anhydrobiosis is phenotypic adaptation that allows individuals to withstand the temporary desiccation of their otherwise aquatic environment. It is common across microinvertebrate groups, namely tardigrades. Gene expression analyses provide a window to the molecular mechanisms that enable organisms to survive and recover from these events. Proteins of three major groups have been suggested to have a key role in such adaptations: heat-shock proteins (HSPs), aquaporins (AQPs) and late embryogenic abundant proteins (LEAs). However, previous studies have largely focused on only a small subset of these proteins, and/or only compared effects between the end points of the anhydrobiosis process (i.e. dry vs. active individuals). In my\nstudy, I combine for the first time (i) the simultaneous estimate of expression levels in all three key protein groups, and (ii) a comparison across consecutive anhydrobiosis states (active, transitioning and dry), using the tardigrade Hypsibius exemplaris. Moreover, by using digital droplet PCR (ddPCR), a novel approach that is optimized for small sampling units, I could obtain more precise expression\nmeasures. The results show different patterns of gene expression in all target genes. The expression level of HSP70-like 1 dropped by 80% in the dry state compared to the transition state, while the transcript copies halved between active and transitional states. HSP70-like 1 transcript numbers stayed similar between active and transitional states. AQP10 expression levels were 3 time more in the active state and 5 times more in the preconditioning state, while the dry state had 3 times more transcript copies compared to the transitional state. LEA1 showed\ninduction during the preconditioning state, while the expression levels in active, transition and dry states stayed similar. The findings from HSP70-like 1 are similar to expression changes in HSP70-3 observed previously in the tardigrade Milnesium tardigradum. This implies that HSP70-like 1 might have a similar role in H. exemplaris. The induction of AQP10 in preconditioning suggests this gene is important for H. exemplaris when entering anhydrobiosis. The induction of LEA1 in the preconditioning state also suggests this gene has a role in entering anhydrobiosis. In conclusion, this study illustrates the importance of studying species-specific mechanisms of tardigrade adaptation to changing limnoterrestrial\nconditions as well as provides a benchmark for comparative studies and future experimental research.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Paivi Vuorio (paelvuor@jyu.fi) on 2018-10-10T05:31:54Z\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2018-10-10T05:31:54Z (GMT). No. of bitstreams: 0\n Previous issue date: 2018", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "39", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "aquaporin", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "ddPCR", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "HSP", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hypsibius exemplaris", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "LEA", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Gene expression patterns during anhydrobiosis in Hypsibius exemplaris", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201810104396", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Bio- ja ymp\u00e4rist\u00f6tieteiden laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Biological and Environmental Science", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Solu- ja molekyylibiologia", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Cell and molecular biology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4013", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "molekyylibiologia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteiinit", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "karhukaiset", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "molecular biology", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "proteins", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "Tardigrada", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_59793
language eng
last_indexed 2025-03-31T20:03:27Z
main_date 2018-01-01T00:00:00Z
main_date_str 2018
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/284ac5de-6a2c-4ec9-8e1e-35d36b42e673\/download","text":"URN:NBN:fi:jyu-201810104396.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2018
record_format qdc
source_str_mv jyx
spellingShingle Nikupaavola, Tiia Gene expression patterns during anhydrobiosis in Hypsibius exemplaris aquaporin ddPCR HSP hypsibius exemplaris LEA Solu- ja molekyylibiologia Cell and molecular biology 4013 molekyylibiologia proteiinit karhukaiset molecular biology proteins Tardigrada
title Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
title_full Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
title_fullStr Gene expression patterns during anhydrobiosis in Hypsibius exemplaris Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
title_full_unstemmed Gene expression patterns during anhydrobiosis in Hypsibius exemplaris Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
title_short Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
title_sort gene expression patterns during anhydrobiosis in hypsibius exemplaris
title_txtP Gene expression patterns during anhydrobiosis in Hypsibius exemplaris
topic aquaporin ddPCR HSP hypsibius exemplaris LEA Solu- ja molekyylibiologia Cell and molecular biology 4013 molekyylibiologia proteiinit karhukaiset molecular biology proteins Tardigrada
topic_facet 4013 Cell and molecular biology HSP LEA Solu- ja molekyylibiologia Tardigrada aquaporin ddPCR hypsibius exemplaris karhukaiset molecular biology molekyylibiologia proteiinit proteins
url https://jyx.jyu.fi/handle/123456789/59793 http://www.urn.fi/URN:NBN:fi:jyu-201810104396
work_keys_str_mv AT nikupaavolatiia geneexpressionpatternsduringanhydrobiosisinhypsibiusexemplaris