Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa

Tässä kandidaatin tutkielmassa käsitellään massadatan (engl. Big Data) hyödyntämistä markkinoinnissa ja etenkin asiakastarpeiden kartoittamisessa. Tutkielma alkaa aiheen, massadata määrittämisellä sekä massadata-analyysista. Tutkielman toisessa luvussa käsitellään markkinointia ja sen tavoitteita....

Full description

Bibliographic Details
Main Author: Pöntinen, Ville
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, Jyväskylän yliopisto, University of Jyväskylä
Format: Bachelor's thesis
Language:fin
Published: 2018
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/59320
_version_ 1826225815877058560
author Pöntinen, Ville
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_facet Pöntinen, Ville Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä Pöntinen, Ville Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology Jyväskylän yliopisto University of Jyväskylä
author_sort Pöntinen, Ville
datasource_str_mv jyx
description Tässä kandidaatin tutkielmassa käsitellään massadatan (engl. Big Data) hyödyntämistä markkinoinnissa ja etenkin asiakastarpeiden kartoittamisessa. Tutkielma alkaa aiheen, massadata määrittämisellä sekä massadata-analyysista. Tutkielman toisessa luvussa käsitellään markkinointia ja sen tavoitteita. Luvussa käsitellään myös asiakastarpeita. Seuraavassa luvussa yhdistetään aihe ja näkökulma käsittelemällä massadatan hyödyntämistä asiakastarpeiden kartoittamisessa. Tutkimus toteutettiin kirjallisuuskatsauksena, jossa artikkelit valittiin vastaamaan tutkimuskysymykseen: Miten massadataa hyödynnetään asiakastarpeiden (engl. Customer Needs) kartoittamiseen perustuvassa markkinoinnissa. Massadata on ympäristössään uutta dataa, jota on määritelty eri tavoin. Massadatasta saadut hyödyt liike-elämälle ovat ennakkokäsitysten mukaan kiistattomat, ja tämä tutkielma tukee tätä käsitystä. Tuloksia on tarkasteltu tutkielmassa kolmesta näkökulmasta: markkinoinnin viitekehyksestä, piilevien asiakastarpeiden esiin nostamisesta sekä Internet-markkinoinnissa käytetyistä massadatatyypeistä ja niiden soveltamisesta. In this bachelor’s thesis big data is concerned in benefiting in marketing and es- pecially finding out customers needs. Thesis starts with determination of con- cept, big data, and big data analyzes. Second chapter is about theory of marketing and goals of it. In this chapter customer needs are also defined. Next chapter is about mixing these two together, subject and perspective (customer needs), con- cerning benefits of big data in area of customer needs. Research was conducted as a literature review which source material was chosen to answer to the research question: How are customer needs developed by using big data in marketing based on customer needs. Big data is a new data in its environment, which is defined in different means. The benefits of big data for business are unques- tioned. The results of the thesis support this preliminary view. In this thesis the results have been studied from three perspectives: the marketing framework, the emergence of hidden customer needs, and big data types and applications used in e-marketing.
first_indexed 2019-08-19T08:21:29Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.advisor", "value": "Luoma, Eetu", "language": "", "element": "contributor", "qualifier": "advisor", "schema": "dc"}, {"key": "dc.contributor.author", "value": "P\u00f6ntinen, Ville", "language": "", "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2018-08-23T09:29:10Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2018-08-23T09:29:10Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2018", "language": "", "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/59320", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "T\u00e4ss\u00e4 kandidaatin tutkielmassa k\u00e4sitell\u00e4\u00e4n massadatan (engl. Big Data) hy\u00f6dynt\u00e4mist\u00e4 markkinoinnissa ja etenkin asiakastarpeiden kartoittamisessa. Tutkielma \r\nalkaa aiheen, massadata m\u00e4\u00e4ritt\u00e4misell\u00e4 sek\u00e4 massadata-analyysista. Tutkielman toisessa luvussa k\u00e4sitell\u00e4\u00e4n markkinointia ja sen tavoitteita. Luvussa k\u00e4sitell\u00e4\u00e4n my\u00f6s asiakastarpeita. Seuraavassa luvussa yhdistet\u00e4\u00e4n aihe ja n\u00e4k\u00f6kulma \r\nk\u00e4sittelem\u00e4ll\u00e4 massadatan hy\u00f6dynt\u00e4mist\u00e4 asiakastarpeiden kartoittamisessa. \r\nTutkimus toteutettiin kirjallisuuskatsauksena, jossa artikkelit valittiin vastaamaan tutkimuskysymykseen: Miten massadataa hy\u00f6dynnet\u00e4\u00e4n asiakastarpeiden \r\n(engl. Customer Needs) kartoittamiseen perustuvassa markkinoinnissa. Massadata on ymp\u00e4rist\u00f6ss\u00e4\u00e4n uutta dataa, jota on m\u00e4\u00e4ritelty eri tavoin. Massadatasta \r\nsaadut hy\u00f6dyt liike-el\u00e4m\u00e4lle ovat ennakkok\u00e4sitysten mukaan kiistattomat, ja \r\nt\u00e4m\u00e4 tutkielma tukee t\u00e4t\u00e4 k\u00e4sityst\u00e4. Tuloksia on tarkasteltu tutkielmassa kolmesta n\u00e4k\u00f6kulmasta: markkinoinnin viitekehyksest\u00e4, piilevien asiakastarpeiden \r\nesiin nostamisesta sek\u00e4 Internet-markkinoinnissa k\u00e4ytetyist\u00e4 massadatatyypeist\u00e4 ja niiden soveltamisesta.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "In this bachelor\u2019s thesis big data is concerned in benefiting in marketing and es-\r\npecially finding out customers needs. Thesis starts with determination of con-\r\ncept, big data, and big data analyzes. Second chapter is about theory of marketing \r\nand goals of it. In this chapter customer needs are also defined. Next chapter is\r\nabout mixing these two together, subject and perspective (customer needs), con-\r\ncerning benefits of big data in area of customer needs. Research was conducted \r\nas a literature review which source material was chosen to answer to the research \r\nquestion: How are customer needs developed by using big data in marketing \r\nbased on customer needs. Big data is a new data in its environment, which is \r\ndefined in different means. The benefits of big data for business are unques-\r\ntioned. The results of the thesis support this preliminary view. In this thesis the \r\nresults have been studied from three perspectives: the marketing framework, the \r\nemergence of hidden customer needs, and big data types and applications used \r\nin e-marketing.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by Riitta Pitk\u00e4nen (rpitkane@jyu.fi) on 2018-08-23T09:29:10Z\r\nNo. of bitstreams: 0", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2018-08-23T09:29:10Z (GMT). No. of bitstreams: 0\r\n Previous issue date: 2018", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "35", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "asiakastarpeet", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "piilev\u00e4t asiakastarpeet", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "e-markkinointi", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "massadata", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Massadatan hy\u00f6dynnett\u00e4vyys asiakastarpeiden kartoittamisessa", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201808233921", "language": "", "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatinty\u00f6", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietoj\u00e4rjestelm\u00e4tiede", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Information Systems Science", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "yvv.contractresearch.funding", "value": "0", "language": "", "element": "contractresearch", "qualifier": "funding", "schema": "yvv"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": null, "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "601", "language": "", "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "tarpeet", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "asiakkaat", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "markkinointi", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "big data", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "data", "language": "", "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_59320
language fin
last_indexed 2025-02-18T10:55:22Z
main_date 2018-01-01T00:00:00Z
main_date_str 2018
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/0d4ff08c-b22c-4fb8-96fc-ec635b0053c4\/download","text":"URN:NBN:fi:jyu-201808233921.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2018
record_format qdc
source_str_mv jyx
spellingShingle Pöntinen, Ville Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa asiakastarpeet piilevät asiakastarpeet e-markkinointi massadata Tietojärjestelmätiede Information Systems Science 601 tarpeet asiakkaat markkinointi big data data
title Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_full Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_fullStr Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_full_unstemmed Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_short Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_sort massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
title_txtP Massadatan hyödynnettävyys asiakastarpeiden kartoittamisessa
topic asiakastarpeet piilevät asiakastarpeet e-markkinointi massadata Tietojärjestelmätiede Information Systems Science 601 tarpeet asiakkaat markkinointi big data data
topic_facet 601 Information Systems Science Tietojärjestelmätiede asiakastarpeet asiakkaat big data data e-markkinointi markkinointi massadata piilevät asiakastarpeet tarpeet
url https://jyx.jyu.fi/handle/123456789/59320 http://www.urn.fi/URN:NBN:fi:jyu-201808233921
work_keys_str_mv AT pöntinenville massadatanhyödynnettävyysasiakastarpeidenkartoittamisessa