Mostow'n rigiditeettilause

Mostow’n rigiditeettilauseen mukaan kaksi vähintään 3-ulotteista kompaktia hyperbolista monistoa ovat isometriset, jos ne ovat diffeomorfiset. Hyperbolinen monisto on monisto, jolla on hyperbolisen avaruuden avointen joukkojen kanssa isometrisistä avoimista joukoista koostuva peite. George Mostow todi...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Leppänen, Antti
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, Jyväskylän yliopisto, University of Jyväskylä
Aineistotyyppi: Pro gradu
Kieli:fin
Julkaistu: 2018
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/59147
Kuvaus
Yhteenveto:Mostow’n rigiditeettilauseen mukaan kaksi vähintään 3-ulotteista kompaktia hyperbolista monistoa ovat isometriset, jos ne ovat diffeomorfiset. Hyperbolinen monisto on monisto, jolla on hyperbolisen avaruuden avointen joukkojen kanssa isometrisistä avoimista joukoista koostuva peite. George Mostow todisti lauseen vuonna 1968. Täydellinen hyperbolinen monisto voidaan samaistaa hyperbolisen avaruuden isometrioiden ryhmän eli konformikuvausten Möbius-ryhmän aliryhmän kanssa. Tämä aliryhmä on isomorfinen moniston perusryhmän kanssa. Monisto saadaan tällöin tekijävaruutena tämän aliryhmän toiminnassa hyperbolisella avaruudella. Lause todistetaan osoittamalla, että jos monistoja vastaavat aliryhmät ovat kvasikonformikuvauksen konjugoimia, niin tämä kvasikonformikuvaus onkin konformikuvaus. Möbius-ryhmä osoitetaan hyperbolisen avaruuden isometrioiden ryhmäksi käyttäen apuna sen isomorfisuutta ryhmän O(1,n + 1) kanssa. Osoitetaan myös, että hyperbolinen avaruus on jokaisen hyperbolisen moniston isometrinen peite. Kuoren eli yleistetyn annuluksen konformikapasiteetin jatkuvuus todistetaan aiempien aputulosten avulla. Topologisen ryhmån operaatiossa invarianttia Haarin mittaa käyttäen todistetaan eräs päälauseen todistuksessa tarvittava apulause. Päälause todistetaan käyttäen lisäksi konformikapasiteetin jatkuvuutta, polaarihajotelmaa, kvasikonformikuvauksen jatkumista pallon reunalle ja sitä, että 1-kvasikonformikuvaus on konformikuvaus.