_version_ |
1799746158134820864
|
annif_keywords_txtF_mv |
machine learning
neural networks (information technology)
perception (activity)
imaging
deviance
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p7292
http://www.yso.fi/onto/yso/p5293
http://www.yso.fi/onto/yso/p3532
http://www.yso.fi/onto/yso/p2660
|
author |
Penttilä, Jeremias
|
author2 |
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
University of Jyväskylä
Jyväskylän yliopisto
Tietotekniikka
Mathematical Information Technology
602
|
author_facet |
Penttilä, Jeremias
Informaatioteknologian tiedekunta
Faculty of Information Technology
Informaatioteknologia
University of Jyväskylä
Jyväskylän yliopisto
Tietotekniikka
Mathematical Information Technology
602
Penttilä, Jeremias
|
author_sort |
Penttilä, Jeremias
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Informaatioteknologia
|
faculty_txtF |
Informaatioteknologian tiedekunta
|
first_indexed |
2023-03-22T10:01:24Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Pro gradu
|
free_online_boolean |
1
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders</title><creator>Penttilä, Jeremias</creator><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="laitos" lang="fi">Informaatioteknologia</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="oppiaine" lang="fi">Tietotekniikka</contributor><contributor type="oppiaine" lang="en">Mathematical Information Technology</contributor><contributor type="oppiainekoodi">602</contributor><subject type="other">hyperspektrikuvat</subject><subject type="other">konvoluutio</subject><subject type="other">autoenkooderit</subject><subject type="other">machine learning</subject><subject type="other">anomaly detection</subject><subject type="other">hyperspectral images</subject><subject type="other">hdbscan</subject><subject type="other">convolutional neural network</subject><subject type="other">autoencoder</subject><subject type="other">convolutional autoencoder</subject><subject type="other">CAE</subject><subject type="other">SCAE</subject><subject type="other">deep learning</subject><subject type="other">autoenkooderi</subject><subject type="yso">älytekniikka</subject><subject type="yso">poikkeavuus</subject><subject type="yso">havaitseminen</subject><subject type="yso">neuroverkot</subject><subject type="yso">koneoppiminen</subject><available>2017-11-14T11:09:40Z</available><issued>2017</issued><type lang="fi">Pro gradu -tutkielma</type><type lang="en">Master’s thesis</type><identifier type="other">oai:jykdok.linneanet.fi:1738562</identifier><identifier type="uri">https://jyx.jyu.fi/handle/123456789/55868</identifier><identifier type="urn">URN:NBN:fi:jyu-201711144248</identifier><language type="iso">eng</language><rights lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><rights type="accesslevel" lang="fi">openAccess</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-201711144248</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/55868/1/URN%3aNBN%3afi%3ajyu-201711144248.pdf" name="URN:NBN:fi:jyu-201711144248.pdf" type="application/pdf" length="9839130" sequence="1"/><recordID>123456789_55868</recordID></qualifieddc>
|
id |
jyx.123456789_55868
|
language |
eng
|
last_indexed |
2024-05-13T20:04:35Z
|
main_date |
2017-01-01T00:00:00Z
|
main_date_str |
2017
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/55868\/1\/URN%3aNBN%3afi%3ajyu-201711144248.pdf","text":"URN:NBN:fi:jyu-201711144248.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
602
|
publication_first_indexed |
2017-03-22T10:01:24Z
|
publishDate |
2017
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Penttilä, Jeremias
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
hyperspektrikuvat
konvoluutio
autoenkooderit
machine learning
anomaly detection
hyperspectral images
hdbscan
convolutional neural network
autoencoder
convolutional autoencoder
CAE
SCAE
deep learning
autoenkooderi
älytekniikka
poikkeavuus
havaitseminen
neuroverkot
koneoppiminen
|
subject_txtF |
Tietotekniikka
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_55868&index=0&size=large
|
title |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
title_full |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
title_fullStr |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
title_full_unstemmed |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
title_short |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
title_sort |
method for anomaly detection in hyperspectral images using deep convolutional autoencoders
|
title_txtP |
A method for anomaly detection in hyperspectral images, using deep convolutional autoencoders
|
topic |
hyperspektrikuvat
konvoluutio
autoenkooderit
machine learning
anomaly detection
hyperspectral images
hdbscan
convolutional neural network
autoencoder
convolutional autoencoder
CAE
SCAE
deep learning
autoenkooderi
älytekniikka
poikkeavuus
havaitseminen
neuroverkot
koneoppiminen
|
topic_facet |
CAE
SCAE
anomaly detection
autoencoder
autoenkooderi
autoenkooderit
convolutional autoencoder
convolutional neural network
deep learning
havaitseminen
hdbscan
hyperspectral images
hyperspektrikuvat
koneoppiminen
konvoluutio
machine learning
neuroverkot
poikkeavuus
älytekniikka
|
url |
https://jyx.jyu.fi/handle/123456789/55868
http://www.urn.fi/URN:NBN:fi:jyu-201711144248
|
work_keys_str_mv |
AT penttiläjeremias amethodforanomalydetectioninhyperspectralimagesusingdeepconvolutionalautoencode
AT penttiläjeremias methodforanomalydetectioninhyperspectralimagesusingdeepconvolutionalautoencoder
|