Neuroverkkojen regularisointimenetelmät

Ylisovitus on yleinen ongelma ohjatussa oppimisessa, missä malli oppii suoriutumaan hyvin oppimisessa käytetyllä datalla, mutta alisuoriutuu oppimisen aikana näkemättömällä datalla. Regularisointimenetelmillä pyritään vähentämään ylisovitusta ohjatun oppimisen sovellutuksissa. Tämä tutkielma keskitt...

Full description

Bibliographic Details
Main Author: Ojala, Timo
Other Authors: Informaatioteknologian tiedekunta, Faculty of Information Technology, Informaatioteknologia, Information Technology, University of Jyväskylä, Jyväskylän yliopisto
Format: Bachelor's thesis
Language:fin
Published: 2016
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/52722
_version_ 1826225795051290624
author Ojala, Timo
author2 Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology University of Jyväskylä Jyväskylän yliopisto
author_facet Ojala, Timo Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology University of Jyväskylä Jyväskylän yliopisto Ojala, Timo Informaatioteknologian tiedekunta Faculty of Information Technology Informaatioteknologia Information Technology University of Jyväskylä Jyväskylän yliopisto
author_sort Ojala, Timo
datasource_str_mv jyx
description Ylisovitus on yleinen ongelma ohjatussa oppimisessa, missä malli oppii suoriutumaan hyvin oppimisessa käytetyllä datalla, mutta alisuoriutuu oppimisen aikana näkemättömällä datalla. Regularisointimenetelmillä pyritään vähentämään ylisovitusta ohjatun oppimisen sovellutuksissa. Tämä tutkielma keskittyy tutkimaan ja kartoittamaan erilaisia neuroverkoissa käytettyjä regularisointimenetelmiä. Overfitting is a common problem in supervised learning, where a model learns to perform well with the data used to train it, but underperforms with data it has not seen during the training. Regularization methods are used to reduce overfitting in applications of supervised learning. This paper focuses on researching and mapping various regularization methods used in neural networks.
first_indexed 2017-01-13T21:16:21Z
format Kandityö
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Ojala, Timo", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2017-01-13T06:11:30Z", "language": null, "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2017-01-13T06:11:30Z", "language": null, "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2016", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/52722", "language": null, "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Ylisovitus on yleinen ongelma ohjatussa oppimisessa, miss\u00e4 malli oppii suoriutumaan hyvin oppimisessa k\u00e4ytetyll\u00e4 datalla, mutta alisuoriutuu oppimisen aikana n\u00e4kem\u00e4tt\u00f6m\u00e4ll\u00e4 datalla. Regularisointimenetelmill\u00e4 pyrit\u00e4\u00e4n v\u00e4hent\u00e4m\u00e4\u00e4n ylisovitusta ohjatun oppimisen sovellutuksissa. T\u00e4m\u00e4 tutkielma keskittyy tutkimaan ja kartoittamaan erilaisia neuroverkoissa k\u00e4ytettyj\u00e4 regularisointimenetelmi\u00e4.", "language": "fi", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Overfitting is a common problem in supervised learning, where a model learns to perform well with the data used to train it, but underperforms with data it has not seen during the training. Regularization methods are used to reduce overfitting in applications of supervised learning. This paper focuses on researching and mapping various regularization methods used in neural networks.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Timo Ojala (tiheojal) on 2017-01-13 06:11:29.805890. Form: Kandidaatintutkielma -lomake (https://kirjasto.jyu.fi/julkaisut/julkaisulomakkeet/kandin-tutkielma-lomake). JyX data: [jyx_publishing-allowed (fi) =True]", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija.group@korppi.jyu.fi) on 2017-01-13T06:11:30Z\nNo. of bitstreams: 2\nURN:NBN:fi:jyu-201701131144.pdf: 348199 bytes, checksum: 85d5089834fb313e25b6832b3d3e2e71 (MD5)\nlicense.html: 4777 bytes, checksum: e587aec16ed3d508bfce89ed535076cf (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2017-01-13T06:11:30Z (GMT). No. of bitstreams: 2\nURN:NBN:fi:jyu-201701131144.pdf: 348199 bytes, checksum: 85d5089834fb313e25b6832b3d3e2e71 (MD5)\nlicense.html: 4777 bytes, checksum: e587aec16ed3d508bfce89ed535076cf (MD5)\n Previous issue date: 2016", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "25", "language": "", "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.language.iso", "value": "fin", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "neuroverkot", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "regularisaatio", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "ylisovitus", "language": null, "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Neuroverkkojen regularisointimenetelm\u00e4t", "language": "", "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "bachelor thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201701131144", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Kandidaatintutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Bachelor's thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Informaatioteknologian tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Information Technology", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Informaatioteknologia", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Information Technology", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Tietotekniikka", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Mathematical Information Technology", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2017-01-13T06:11:31Z", "language": null, "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_7a1f", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "bachelorThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}]
id jyx.123456789_52722
language fin
last_indexed 2025-02-18T10:54:26Z
main_date 2016-01-01T00:00:00Z
main_date_str 2016
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e8bfb52e-a816-40a3-a33c-d057fa2d1363\/download","text":"URN:NBN:fi:jyu-201701131144.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2016
record_format qdc
source_str_mv jyx
spellingShingle Ojala, Timo Neuroverkkojen regularisointimenetelmät neuroverkot regularisaatio ylisovitus Tietotekniikka Mathematical Information Technology
title Neuroverkkojen regularisointimenetelmät
title_full Neuroverkkojen regularisointimenetelmät
title_fullStr Neuroverkkojen regularisointimenetelmät Neuroverkkojen regularisointimenetelmät
title_full_unstemmed Neuroverkkojen regularisointimenetelmät Neuroverkkojen regularisointimenetelmät
title_short Neuroverkkojen regularisointimenetelmät
title_sort neuroverkkojen regularisointimenetelmät
title_txtP Neuroverkkojen regularisointimenetelmät
topic neuroverkot regularisaatio ylisovitus Tietotekniikka Mathematical Information Technology
topic_facet Mathematical Information Technology Tietotekniikka neuroverkot regularisaatio ylisovitus
url https://jyx.jyu.fi/handle/123456789/52722 http://www.urn.fi/URN:NBN:fi:jyu-201701131144
work_keys_str_mv AT ojalatimo neuroverkkojenregularisointimenetelmät