_version_ 1800740345720340480
annif_keywords_txtF_mv recidivism regression analysis forecasts machine learning forests
annif_uris_txtF_mv http://www.yso.fi/onto/yso/p18189 http://www.yso.fi/onto/yso/p2130 http://www.yso.fi/onto/yso/p3297 http://www.yso.fi/onto/yso/p21846 http://www.yso.fi/onto/yso/p5454
author Aaltonen, Olli-Pekka
author2 Faculty of Information Technology Informaatioteknologian tiedekunta Tietojenkäsittelytieteiden laitos Department of Computer Science and Information Systems University of Jyväskylä Jyväskylän yliopisto Information Systems Science Tietojärjestelmätiede 601
author_facet Aaltonen, Olli-Pekka Faculty of Information Technology Informaatioteknologian tiedekunta Tietojenkäsittelytieteiden laitos Department of Computer Science and Information Systems University of Jyväskylä Jyväskylän yliopisto Information Systems Science Tietojärjestelmätiede 601 Aaltonen, Olli-Pekka
author_sort Aaltonen, Olli-Pekka
building Jyväskylän yliopisto JYX-julkaisuarkisto
datasource_str_mv jyx
department_txtF Informaatioteknologia
faculty_txtF Informaatioteknologian tiedekunta
first_indexed 2023-03-22T10:01:47Z
format Pro gradu
format_ext_str_mv Opinnäyte Maisterivaiheen työ
fullrecord <?xml version="1.0"?> <qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism</title><creator>Aaltonen, Olli-Pekka</creator><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="laitos" lang="fi">Tietojenk&#xE4;sittelytieteiden laitos</contributor><contributor type="laitos" lang="en">Department of Computer Science and Information Systems</contributor><contributor type="yliopisto" lang="en">University of Jyv&#xE4;skyl&#xE4;</contributor><contributor type="yliopisto" lang="fi">Jyv&#xE4;skyl&#xE4;n yliopisto</contributor><contributor type="oppiaine" lang="en">Information Systems Science</contributor><contributor type="oppiaine" lang="fi">Tietoj&#xE4;rjestelm&#xE4;tiede</contributor><contributor type="oppiainekoodi">601</contributor><subject type="other">Recidivism</subject><subject type="other">machine learning</subject><subject type="other">Random forest</subject><subject type="other">logistic regression</subject><subject type="other">forecasting</subject><subject type="yso">uusintarikollisuus</subject><subject type="yso">ennusteet</subject><subject type="yso">regressioanalyysi</subject><subject type="yso">koneoppiminen</subject><available>2016-11-23T08:10:17Z</available><issued>2016</issued><type lang="en">Master&#x2019;s thesis</type><type lang="fi">Pro gradu -tutkielma</type><identifier type="other">oai:jykdok.linneanet.fi:1643461</identifier><identifier type="uri">https://jyx.jyu.fi/handle/123456789/51967</identifier><identifier type="urn">URN:NBN:fi:jyu-201611234724</identifier><language type="iso">eng</language><rights lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><rights lang="fi">Julkaisu on tekij&#xE4;noikeuss&#xE4;&#xE4;nn&#xF6;sten alainen. Teosta voi lukea ja tulostaa henkil&#xF6;kohtaista k&#xE4;ytt&#xF6;&#xE4; varten. K&#xE4;ytt&#xF6; kaupallisiin tarkoituksiin on kielletty.</rights><rights type="accesslevel" lang="fi">restrictedAccess</rights><rights type="accessrights" lang="en">This material has a restricted access due to copyright reasons. It can be read at the workstation at Jyv&#xE4;skyl&#xE4; University Library reserved for the use of archival materials: https://kirjasto.jyu.fi/en/workspaces/facilities.</rights><rights type="accessrights" lang="fi">Aineistoon p&#xE4;&#xE4;sy&#xE4; on rajoitettu tekij&#xE4;noikeussyist&#xE4;. Aineisto on luettavissa Jyv&#xE4;skyl&#xE4;n yliopiston kirjaston arkistoty&#xF6;asemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-201611234724</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/51967/1/URN%3aNBN%3afi%3ajyu-201611234724.pdf" name="URN:NBN:fi:jyu-201611234724.pdf" type="application/pdf" length="912639" sequence="1"/><recordID>123456789_51967</recordID></qualifieddc>
id jyx.123456789_51967
language eng
last_indexed 2024-05-24T20:00:41Z
main_date 2016-01-01T00:00:00Z
main_date_str 2016
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/51967\/1\/URN%3aNBN%3afi%3ajyu-201611234724.pdf","text":"URN:NBN:fi:jyu-201611234724.pdf","source":"jyx","mediaType":"application\/pdf"}
oppiainekoodi_txtF 601
publication_first_indexed 2016-03-22T10:01:47Z
publishDate 2016
record_format qdc
source_str_mv jyx
spellingShingle Aaltonen, Olli-Pekka Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism Recidivism machine learning Random forest logistic regression forecasting uusintarikollisuus ennusteet regressioanalyysi koneoppiminen
subject_txtF Kognitiotiede
thumbnail https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_51967&index=0&size=large
title Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_full Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_fullStr Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_full_unstemmed Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_short Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_sort comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
title_txtP Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
topic Recidivism machine learning Random forest logistic regression forecasting uusintarikollisuus ennusteet regressioanalyysi koneoppiminen
topic_facet Random forest Recidivism ennusteet forecasting koneoppiminen logistic regression machine learning regressioanalyysi uusintarikollisuus
url https://jyx.jyu.fi/handle/123456789/51967 http://www.urn.fi/URN:NBN:fi:jyu-201611234724
work_keys_str_mv AT aaltonenollipekka comparingtheforecastingperformanceoflogisticregressionandrandomforestmodelsinc