_version_ |
1800740345720340480
|
annif_keywords_txtF_mv |
recidivism
regression analysis
forecasts
machine learning
forests
|
annif_uris_txtF_mv |
http://www.yso.fi/onto/yso/p18189
http://www.yso.fi/onto/yso/p2130
http://www.yso.fi/onto/yso/p3297
http://www.yso.fi/onto/yso/p21846
http://www.yso.fi/onto/yso/p5454
|
author |
Aaltonen, Olli-Pekka
|
author2 |
Faculty of Information Technology
Informaatioteknologian tiedekunta
Tietojenkäsittelytieteiden laitos
Department of Computer Science and Information Systems
University of Jyväskylä
Jyväskylän yliopisto
Information Systems Science
Tietojärjestelmätiede
601
|
author_facet |
Aaltonen, Olli-Pekka
Faculty of Information Technology
Informaatioteknologian tiedekunta
Tietojenkäsittelytieteiden laitos
Department of Computer Science and Information Systems
University of Jyväskylä
Jyväskylän yliopisto
Information Systems Science
Tietojärjestelmätiede
601
Aaltonen, Olli-Pekka
|
author_sort |
Aaltonen, Olli-Pekka
|
building |
Jyväskylän yliopisto
JYX-julkaisuarkisto
|
datasource_str_mv |
jyx
|
department_txtF |
Informaatioteknologia
|
faculty_txtF |
Informaatioteknologian tiedekunta
|
first_indexed |
2023-03-22T10:01:47Z
|
format |
Pro gradu
|
format_ext_str_mv |
Opinnäyte
Maisterivaiheen työ
|
fullrecord |
<?xml version="1.0"?>
<qualifieddc schemaLocation="http://purl.org/dc/terms/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dcterms.xsd http://purl.org/dc/elements/1.1/ http://dublincore.org/schemas/xmls/qdc/2006/01/06/dc.xsd"><title>Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism</title><creator>Aaltonen, Olli-Pekka</creator><contributor type="tiedekunta" lang="en">Faculty of Information Technology</contributor><contributor type="tiedekunta" lang="fi">Informaatioteknologian tiedekunta</contributor><contributor type="laitos" lang="fi">Tietojenkäsittelytieteiden laitos</contributor><contributor type="laitos" lang="en">Department of Computer Science and Information Systems</contributor><contributor type="yliopisto" lang="en">University of Jyväskylä</contributor><contributor type="yliopisto" lang="fi">Jyväskylän yliopisto</contributor><contributor type="oppiaine" lang="en">Information Systems Science</contributor><contributor type="oppiaine" lang="fi">Tietojärjestelmätiede</contributor><contributor type="oppiainekoodi">601</contributor><subject type="other">Recidivism</subject><subject type="other">machine learning</subject><subject type="other">Random forest</subject><subject type="other">logistic regression</subject><subject type="other">forecasting</subject><subject type="yso">uusintarikollisuus</subject><subject type="yso">ennusteet</subject><subject type="yso">regressioanalyysi</subject><subject type="yso">koneoppiminen</subject><available>2016-11-23T08:10:17Z</available><issued>2016</issued><type lang="en">Master’s thesis</type><type lang="fi">Pro gradu -tutkielma</type><identifier type="other">oai:jykdok.linneanet.fi:1643461</identifier><identifier type="uri">https://jyx.jyu.fi/handle/123456789/51967</identifier><identifier type="urn">URN:NBN:fi:jyu-201611234724</identifier><language type="iso">eng</language><rights lang="en">This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.</rights><rights lang="fi">Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty.</rights><rights type="accesslevel" lang="fi">restrictedAccess</rights><rights type="accessrights" lang="en">This material has a restricted access due to copyright reasons. It can be read at the workstation at Jyväskylä University Library reserved for the use of archival materials: https://kirjasto.jyu.fi/en/workspaces/facilities.</rights><rights type="accessrights" lang="fi">Aineistoon pääsyä on rajoitettu tekijänoikeussyistä. Aineisto on luettavissa Jyväskylän yliopiston kirjaston arkistotyöasemalta. Ks. https://kirjasto.jyu.fi/fi/tyoskentelytilat/laitteet-ja-tilat.</rights><permaddress type="urn">http://www.urn.fi/URN:NBN:fi:jyu-201611234724</permaddress><file bundle="ORIGINAL" href="https://jyx.jyu.fi/bitstream/123456789/51967/1/URN%3aNBN%3afi%3ajyu-201611234724.pdf" name="URN:NBN:fi:jyu-201611234724.pdf" type="application/pdf" length="912639" sequence="1"/><recordID>123456789_51967</recordID></qualifieddc>
|
id |
jyx.123456789_51967
|
language |
eng
|
last_indexed |
2024-05-24T20:00:41Z
|
main_date |
2016-01-01T00:00:00Z
|
main_date_str |
2016
|
online_boolean |
1
|
online_urls_str_mv |
{"url":"https:\/\/jyx.jyu.fi\/bitstream\/123456789\/51967\/1\/URN%3aNBN%3afi%3ajyu-201611234724.pdf","text":"URN:NBN:fi:jyu-201611234724.pdf","source":"jyx","mediaType":"application\/pdf"}
|
oppiainekoodi_txtF |
601
|
publication_first_indexed |
2016-03-22T10:01:47Z
|
publishDate |
2016
|
record_format |
qdc
|
source_str_mv |
jyx
|
spellingShingle |
Aaltonen, Olli-Pekka
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
Recidivism
machine learning
Random forest
logistic regression
forecasting
uusintarikollisuus
ennusteet
regressioanalyysi
koneoppiminen
|
subject_txtF |
Kognitiotiede
|
thumbnail |
https://jyu.finna.fi/Cover/Show?source=Solr&id=jyx.123456789_51967&index=0&size=large
|
title |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_full |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_fullStr |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_full_unstemmed |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_short |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_sort |
comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
title_txtP |
Comparing the forecasting performance of logistic regression and random forest models in criminal recidivism
|
topic |
Recidivism
machine learning
Random forest
logistic regression
forecasting
uusintarikollisuus
ennusteet
regressioanalyysi
koneoppiminen
|
topic_facet |
Random forest
Recidivism
ennusteet
forecasting
koneoppiminen
logistic regression
machine learning
regressioanalyysi
uusintarikollisuus
|
url |
https://jyx.jyu.fi/handle/123456789/51967
http://www.urn.fi/URN:NBN:fi:jyu-201611234724
|
work_keys_str_mv |
AT aaltonenollipekka comparingtheforecastingperformanceoflogisticregressionandrandomforestmodelsinc
|