Kausaalivaikutusten identifiointi algoritmisesti

Kokeelliset tutkimukset ovat perinteinen lähestymistapa kausaalisuuden tutkimiseen tilastotieteessä. Ideaalisessa tilanteessa kiinnostavat muuttujat voidaan mitata halutulla tarkkuudella ja mahdolliset sekoittavat tekijät voidaan eliminoida hyvin suunnitellulla koeasetelmalla. Tällöin tutkijan on ma...

Full description

Bibliographic Details
Main Author: Tikka, Santtu
Other Authors: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Matematiikan ja tilastotieteen laitos, Department of Mathematics and Statistics, University of Jyväskylä, Jyväskylän yliopisto
Format: Master's thesis
Language:fin
Published: 2015
Subjects:
Online Access: https://jyx.jyu.fi/handle/123456789/45582
Description
Summary:Kokeelliset tutkimukset ovat perinteinen lähestymistapa kausaalisuuden tutkimiseen tilastotieteessä. Ideaalisessa tilanteessa kiinnostavat muuttujat voidaan mitata halutulla tarkkuudella ja mahdolliset sekoittavat tekijät voidaan eliminoida hyvin suunnitellulla koeasetelmalla. Tällöin tutkijan on mahdollista sulkea havaittu efekti sattuman ulkopuolelle ja tulkita havainnot kausaalisesta näkökulmasta. Käytännössä tällaista optimaalista tilannetta on usein mahdotonta saavuttaa, eikä moniin tärkeisiin kysymyksiin voida saada vastausta kokeellisella tutkimuksella. Judea Pearlin kausaalimalli tarjoaa formaalin lähestymistavan kausaalisuuteen, ja mallia voidaan soveltaa niin kokeellisen kuin havainnoivankin tutkimuksen yhteydessä. Tässä tutkielmassa keskitytään erityisesti kausaalimalleihin kohdistuviin interventioihin sekä kausaalilaskentaan, joiden avulla voidaan vastata moniin kausaalisuutta koskeviin kysymyksiin. Kausaalilaskenta rakentuu suunnattujen silmukattomien graafien ympärille, jotka tarjoavat esitystavan muuttujien välisille suhteille. Kaikkia interventioita ei kuitenkaan ole mahdollista määrittää. Interventioita, jotka voidaan määrittää yksikäsitteisesti riittävillä oletuksilla muuttujien välisistä kausaalisista yhteyksistä, kutsutaan identifioituviksi. Ei ole itsestäänselvyys, mitkä vaikutukset ovat identifioituvia ja mitkä eivät, annetussa graafissa. Kausaalilaskennan soveltaminen identifioituvuuden määrittämiseksi käytännössä on haastavaa ja työlästä, minkä seurauksena interventioiden käsittelyyn on kehitetty algoritmisia ratkaisuja. Eräs tällainen algoritmi esitellään ja implementoidaan, ja toteutuksen yksityiskohtia käsitellään esimerkkien avulla.