Analysis of 5 MW hydrogen power system with thermal energy storage

Energy storage for further energy production has become a feasible option to deal with energy fluctuation, energy over production and energy shortcomings caused by the penetration of renewable energies. Hydrogen storage has been studied through mathematical model and simulation to predict its perfor...

Täydet tiedot

Bibliografiset tiedot
Päätekijä: Cuellar, Rafael
Muut tekijät: Matemaattis-luonnontieteellinen tiedekunta, Faculty of Sciences, Kemian laitos, Department of Chemistry, University of Jyväskylä, Jyväskylän yliopisto
Aineistotyyppi: Pro gradu
Kieli:eng
Julkaistu: 2013
Aiheet:
Linkit: https://jyx.jyu.fi/handle/123456789/43619
_version_ 1826225768156364800
author Cuellar, Rafael
author2 Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry University of Jyväskylä Jyväskylän yliopisto
author_facet Cuellar, Rafael Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry University of Jyväskylä Jyväskylän yliopisto Cuellar, Rafael Matemaattis-luonnontieteellinen tiedekunta Faculty of Sciences Kemian laitos Department of Chemistry University of Jyväskylä Jyväskylän yliopisto
author_sort Cuellar, Rafael
datasource_str_mv jyx
description Energy storage for further energy production has become a feasible option to deal with energy fluctuation, energy over production and energy shortcomings caused by the penetration of renewable energies. Hydrogen storage has been studied through mathematical model and simulation to predict its performance and technological feasibility. This thesis presents a model where a 5 MW electrolysis plant is simulated. The power plant consists on an electric input from renewable sources like wind turbines or photovoltaic panels. Electrolysis is done by a solid oxide cell that also produces electric power working as fuel cell. Thermal energy storage is added in order to recover heat released by the cell. The main objective of the present work is to analyse the advantages of implementing thermal energy storage in order to store heat released by the fuel cell, determine the best configurations of the system to achieve high efficiencies and identify those parameter that contribute to significant losses. In general, the model shows an efficiency value between 0.54 and 0.84 against 0.28 and 0.44 in similar models. Electrolysis process is validated with high temperature electrolysis models, which consider solid oxide cells as the electrolyser with heat recovery systems. Power generation process is validated against solid oxide fuel cell models, which use the heat produced by the fuel cell in different applications. Using phase change materials (PCM) as thermal energy storage (TES) can increase the round cycle efficiency of the system from 0.44 without TES up to 84% with the application of TES at high and low temperatures. Efficiencies can increase up to 10% when liquid water is pressurized at the initial stage instead of compressing hydrogen at the final stage. Periods of operation are another parameters that could be modified in order to raise the efficiency. The same system working 12 hours as electrolysis at 1.2 V and 12 h as fuel cell has a power ratio of 0.6886, whereas working 5 hours as electrolysis at 1.2 V and 19 h as fuel cell has a power ratio of 0.7838, showing better heat management. Effective utilization of by-product oxygen is an added value to the system. Energy savings around 70% are achieved respect common technologies of oxygen production, which could justify a new cell design in order to keep oxygen purity.
first_indexed 2023-03-22T09:56:47Z
format Pro gradu
free_online_boolean 1
fullrecord [{"key": "dc.contributor.author", "value": "Cuellar, Rafael", "language": null, "element": "contributor", "qualifier": "author", "schema": "dc"}, {"key": "dc.date.accessioned", "value": "2014-06-04T00:23:48Z", "language": "", "element": "date", "qualifier": "accessioned", "schema": "dc"}, {"key": "dc.date.available", "value": "2014-06-04T00:23:48Z", "language": "", "element": "date", "qualifier": "available", "schema": "dc"}, {"key": "dc.date.issued", "value": "2013", "language": null, "element": "date", "qualifier": "issued", "schema": "dc"}, {"key": "dc.identifier.other", "value": "oai:jykdok.linneanet.fi:1436369", "language": null, "element": "identifier", "qualifier": "other", "schema": "dc"}, {"key": "dc.identifier.uri", "value": "https://jyx.jyu.fi/handle/123456789/43619", "language": "", "element": "identifier", "qualifier": "uri", "schema": "dc"}, {"key": "dc.description.abstract", "value": "Energy storage for further energy production has become a feasible option to deal with energy fluctuation, energy over production and energy shortcomings caused by the penetration of renewable energies. Hydrogen storage has been studied through mathematical model and simulation to predict its performance and technological feasibility. This thesis presents a model where a 5 MW electrolysis plant is simulated. The power plant consists on an electric input from renewable sources like wind turbines or photovoltaic panels. Electrolysis is done by a solid oxide cell that also produces electric power working as fuel cell. Thermal energy storage is added in order to recover heat released by the cell.\r\nThe main objective of the present work is to analyse the advantages of implementing thermal energy storage in order to store heat released by the fuel cell, determine the best configurations of the system to achieve high efficiencies and identify those parameter that contribute to significant losses.\r\nIn general, the model shows an efficiency value between 0.54 and 0.84 against 0.28 and 0.44 in similar models. Electrolysis process is validated with high temperature electrolysis models, which consider solid oxide cells as the electrolyser with heat recovery systems. Power generation process is validated against solid oxide fuel cell models, which use the heat produced by the fuel cell in different applications.\r\nUsing phase change materials (PCM) as thermal energy storage (TES) can increase the round cycle efficiency of the system from 0.44 without TES up to 84% with the application of TES at high and low temperatures. Efficiencies can increase up to 10% when liquid water is pressurized at the initial stage instead of compressing hydrogen at the final stage. Periods of operation are another parameters that could be modified in order to raise the efficiency. The same system working 12 hours as electrolysis at 1.2 V and 12 h as fuel cell has a power ratio of 0.6886, whereas working 5 hours as electrolysis at 1.2 V and 19 h as fuel cell has a power ratio of 0.7838, showing better heat management.\r\nEffective utilization of by-product oxygen is an added value to the system. Energy savings around 70% are achieved respect common technologies of oxygen production, which could justify a new cell design in order to keep oxygen purity.", "language": "en", "element": "description", "qualifier": "abstract", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted using Plone Publishing form by Rafael Cuellar Hernandez (raoccuel) on 2014-06-04 00:23:46.373058. Form: Master's Thesis publishing form (1 author) (https://kirjasto.jyu.fi/publish-and-buy/publishing-forms/masters-thesis-publishing-form-1-author). JyX data:", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Submitted by jyx lomake-julkaisija (jyx-julkaisija@noreply.fi) on 2014-06-04T00:23:48Z\r\nNo. of bitstreams: 2\r\nURN:NBN:fi:jyu-201406041915.pdf: 11568197 bytes, checksum: 88e00c6f9971ab59fd9662bf72efc408 (MD5)\r\nlicense.html: 4288 bytes, checksum: ffc26797d2180b689c1374bc7aa95645 (MD5)", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.description.provenance", "value": "Made available in DSpace on 2014-06-04T00:23:48Z (GMT). No. of bitstreams: 2\r\nURN:NBN:fi:jyu-201406041915.pdf: 11568197 bytes, checksum: 88e00c6f9971ab59fd9662bf72efc408 (MD5)\r\nlicense.html: 4288 bytes, checksum: ffc26797d2180b689c1374bc7aa95645 (MD5)\r\n Previous issue date: 2013", "language": "en", "element": "description", "qualifier": "provenance", "schema": "dc"}, {"key": "dc.format.extent", "value": "1 verkkoaineisto (87 sivua)", "language": null, "element": "format", "qualifier": "extent", "schema": "dc"}, {"key": "dc.format.mimetype", "value": "application/pdf", "language": null, "element": "format", "qualifier": "mimetype", "schema": "dc"}, {"key": "dc.language.iso", "value": "eng", "language": null, "element": "language", "qualifier": "iso", "schema": "dc"}, {"key": "dc.rights", "value": "In Copyright", "language": "en", "element": "rights", "qualifier": null, "schema": "dc"}, {"key": "dc.subject.other", "value": "SOFC", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "SOEC", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "Thermal Energy storage", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "hydrogen storage", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "energy", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "storage", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.subject.other", "value": "electrolysis", "language": "", "element": "subject", "qualifier": "other", "schema": "dc"}, {"key": "dc.title", "value": "Analysis of 5 MW hydrogen power system with thermal energy storage", "language": null, "element": "title", "qualifier": null, "schema": "dc"}, {"key": "dc.type", "value": "master thesis", "language": null, "element": "type", "qualifier": null, "schema": "dc"}, {"key": "dc.identifier.urn", "value": "URN:NBN:fi:jyu-201406041915", "language": null, "element": "identifier", "qualifier": "urn", "schema": "dc"}, {"key": "dc.type.dcmitype", "value": "Text", "language": "en", "element": "type", "qualifier": "dcmitype", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Pro gradu -tutkielma", "language": "fi", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.type.ontasot", "value": "Master\u2019s thesis", "language": "en", "element": "type", "qualifier": "ontasot", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Matemaattis-luonnontieteellinen tiedekunta", "language": "fi", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.faculty", "value": "Faculty of Sciences", "language": "en", "element": "contributor", "qualifier": "faculty", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Kemian laitos", "language": "fi", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.department", "value": "Department of Chemistry", "language": "en", "element": "contributor", "qualifier": "department", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "University of Jyv\u00e4skyl\u00e4", "language": "en", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.contributor.organization", "value": "Jyv\u00e4skyl\u00e4n yliopisto", "language": "fi", "element": "contributor", "qualifier": "organization", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Uusiutuva energia (maisteriohjelma)", "language": "fi", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.subject.discipline", "value": "Master's Degree Programme in Renewable Energy", "language": "en", "element": "subject", "qualifier": "discipline", "schema": "dc"}, {"key": "dc.date.updated", "value": "2014-06-04T00:23:49Z", "language": "", "element": "date", "qualifier": "updated", "schema": "dc"}, {"key": "dc.type.coar", "value": "http://purl.org/coar/resource_type/c_bdcc", "language": null, "element": "type", "qualifier": "coar", "schema": "dc"}, {"key": "dc.rights.accesslevel", "value": "openAccess", "language": "fi", "element": "rights", "qualifier": "accesslevel", "schema": "dc"}, {"key": "dc.type.publication", "value": "masterThesis", "language": null, "element": "type", "qualifier": "publication", "schema": "dc"}, {"key": "dc.subject.oppiainekoodi", "value": "4037", "language": null, "element": "subject", "qualifier": "oppiainekoodi", "schema": "dc"}, {"key": "dc.subject.yso", "value": "energia", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "l\u00e4mp\u00f6", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "elektrolyysi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.subject.yso", "value": "varastointi", "language": null, "element": "subject", "qualifier": "yso", "schema": "dc"}, {"key": "dc.format.content", "value": "fulltext", "language": null, "element": "format", "qualifier": "content", "schema": "dc"}, {"key": "dc.rights.url", "value": "https://rightsstatements.org/page/InC/1.0/", "language": null, "element": "rights", "qualifier": "url", "schema": "dc"}, {"key": "dc.type.okm", "value": "G2", "language": null, "element": "type", "qualifier": "okm", "schema": "dc"}]
id jyx.123456789_43619
language eng
last_indexed 2025-02-18T10:54:04Z
main_date 2013-01-01T00:00:00Z
main_date_str 2013
online_boolean 1
online_urls_str_mv {"url":"https:\/\/jyx.jyu.fi\/bitstreams\/e6d089c2-af8a-4141-a1c2-f03708a945a7\/download","text":"URN:NBN:fi:jyu-201406041915.pdf","source":"jyx","mediaType":"application\/pdf"}
publishDate 2013
record_format qdc
source_str_mv jyx
spellingShingle Cuellar, Rafael Analysis of 5 MW hydrogen power system with thermal energy storage SOFC SOEC Thermal Energy storage hydrogen storage energy storage electrolysis Uusiutuva energia (maisteriohjelma) Master's Degree Programme in Renewable Energy 4037 energia lämpö elektrolyysi varastointi
title Analysis of 5 MW hydrogen power system with thermal energy storage
title_full Analysis of 5 MW hydrogen power system with thermal energy storage
title_fullStr Analysis of 5 MW hydrogen power system with thermal energy storage Analysis of 5 MW hydrogen power system with thermal energy storage
title_full_unstemmed Analysis of 5 MW hydrogen power system with thermal energy storage Analysis of 5 MW hydrogen power system with thermal energy storage
title_short Analysis of 5 MW hydrogen power system with thermal energy storage
title_sort analysis of 5 mw hydrogen power system with thermal energy storage
title_txtP Analysis of 5 MW hydrogen power system with thermal energy storage
topic SOFC SOEC Thermal Energy storage hydrogen storage energy storage electrolysis Uusiutuva energia (maisteriohjelma) Master's Degree Programme in Renewable Energy 4037 energia lämpö elektrolyysi varastointi
topic_facet 4037 Master's Degree Programme in Renewable Energy SOEC SOFC Thermal Energy storage Uusiutuva energia (maisteriohjelma) electrolysis elektrolyysi energia energy hydrogen storage lämpö storage varastointi
url https://jyx.jyu.fi/handle/123456789/43619 http://www.urn.fi/URN:NBN:fi:jyu-201406041915
work_keys_str_mv AT cuellarrafael analysisof5mwhydrogenpowersystemwiththermalenergystorage